REFERENCES

1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34-41.

2. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53:1801913.

3. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009;34:888-94.

4. D’Alonzo GE, Barst RJ, Ayers SM, Bergofsky EH, Brundage BH, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115:343-9.

5. Humbert M, Sitbbon O, Chaouat A, Bertocchi M, Habib G, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in modern management era. Circulation 2010;122:156-63.

6. Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M. A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J 2007;30:1103-10.

7. Pogoriler JE, Rich S, Archer SL, Husain AN. Persistence of complex vascular lesions despite prolonged prostacyclin therapy of pulmonary arterial hypertension. Histopathology 2012;61:597-609.

8. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S-24.

9. Mathew R. Inflammation and pulmonary hypertension. Cardiol Rev 2010;18:67-72.

10. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995;151:1628-31.

11. Bhargava A, Kumar A, Yuan N, Gewitz MH, Mathew R. Monocrotaline induces interleukin-6 mRNA expression in rat lungs. Heart Dis 1999;1:126-32.

12. Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, et al. CX (3) C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:1419-25.

13. Dorfmüller P, Zarka V, Durand-Gasselin I, Monti G, Balabanian K, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:534-9.

14. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994;144:275-85.

15. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;186:261-72.

16. Huang J, Wolk JH, Gewitz MH, Mathew R. Caveolin-1 expression during the progression of pulmonary hypertension. Exp Biol Med 2012;237:856-65.

17. Huang J, Frid M, Gewitz MH, Fallon JT, Stenmark K, et al. Hypoxia-induced pulmonary hypertension and chronic lung disease: caveolin-1 dysfunction an important underlying feature. Pulm Circulation 2019;9:2045894019837876.

18. Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2018;114:551-64.

19. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Djonov V, et al. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 2018;25:21.

20. Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, et al. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle–like cells in pulmonary hypertension. Circulation 2014;129:1586-97.

21. Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, et al. Lineage tracing reveals the dynamic contribution of pericytes to the blood vessel remodeling in pulmonary hypertension. Arterioscler Thromb Vasc Biol 2020;40:766-82.

22. Yuan K, Shao NY, Hennigs JK, Discipulo M, Orcholski ME, et al. Increased pyruvate dehydrogenase kinase 4 expression in lung pericytes is associated with reduced endothelial-pericyte interactions and small vessel loss in pulmonary arterial hypertension. Am J Pathol 2016;186:2500-14.

23. Huang J, Wolk JHG, Gewitz MH, Loyd JE, West J, et al. Enhnaced caveolin-1 expression in smooth muscle cells: possible prelude to neointima formation. World J Cardiol 2015;7:671-54.

24. Mathew R, Huang J, Katta UD, Krishnan U, Sandoval C, et al. Immunosuppressant-induced endothelial damage and pulmonary hypertension. J Pediatr Hematol Oncol 2011;33:55-8.

25. Huang J, Mathew R. Loss of cavin1 and expression of p-Caveolin-1 in pulmonary hypertension: possible Role in Neointima Formation. World J Hypertension 2019;9:17-29.

26. Sakao S, Taraseviciene-Stewart L, Lee D, Wood K, Cool D, et al. Vascular endothelial growth factor receptor blockade by SU5416 combined with pulsatile shear stress causes apoptosis and subsequent proliferation of apoptosis-resistant endothelial cells. Chest 2005;128:610S-1.

27. Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013;1:e00008.

28. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005;288:C494-506.

29. Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 2008;68:8210-20.

30. Núñez-Wehinger S, Ortiz RJ, Díaz N, Díaz J, Lobos-González L, et al. Caveolin-1 in cell migration and metastasis. Curr Mol Med 2014;14:255-74.

31. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rec Cardiol 2011;8:443-55.

32. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Cell Mol Biol 2018;19:213-28.

33. Slomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large extracellular vesicles: have we found the holy grail of inflammation? Front Immunol 2018;9:2723.

34. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.

35. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017;14:259-72.

36. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann Rev Cell Dev Biol 2014;30:255-89.

37. György B, Szabó TG, Pásztói M, Pál Z, Misják P, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667-88.

38. Ahn J, Johnstone RM. Origin of a soluble truncated transferrin receptor. Blood 1993;81:2442-51.

39. Zhang J, Li S, Li L, Meng Li M, Guo C, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13:17-24.

40. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 2017;266:100-8.

41. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013;288:17713-24.

42. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014;3.

43. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513-25.

44. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 2010;116:2385-94.

45. Hargette LA, Bauer NN. On the origin of microparticles: From platelet dust to mediators of intercellular communication. Pulm Circ 2013;3:329-40.

46. Lovren F, Verma S. Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem 2013;59:1166-74.

47. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011;31:27-33.

48. Rautou PE, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011;108:335-43.

49. Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscle Thromb Vasc Biol 2006;26:2775-80.

50. Wang JM, Wang Y, Huang JY, Yang Z, Chen L, et al. C-Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res 2007;44:241-8.

51. Habersberger J, Strang F, Scheichl A, Htun N, Bassler N, et al. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc Res 2012;96:64-72.

52. Tushuizen ME, Diamant M, Sturk A, Nieuwland R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe? Arterioscler Thromb Vasc Biol 2011;31:4-9.

53. Abid Hussein MN, Böing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 2007;98:1096-107.

54. Sayner SL, Choi CS, Maulucci ME, Ramila KC, Zhou C, et al. Extracellular vesicles: another compartment for the second messenger, cyclic adenosine monophosphate. Am J Physiol Lung Cell Mol Physiol 2019;316:L691-700.

55. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007;110:2440-8.

56. Martin S, Tesse A, Hugel B, Martínez MC, Morel O, et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 2004;109:1653-9.

57. Genschmer KR, Russell DW, Lal C, Szul T, Bratcher PE, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell 2019;176:113-26.e15.

58. Vats R, Brzoska T, Bennewitz MF, Jimenez MA, Pradhan-Sundd T, et al. Platelet extracellular vesicles drive Inflammasome-IL1β-dependent lung injury in sickle cell disease. Am J Respir Crit Care Med 2020;201:33-46.

59. Zahran AM, Elsayh KI, Saad K, Embaby MM, Youssef MAM, et al. Circulating microparticles in children with sickle cell anemia in a tertiary center in upper Egypt. Clin Appl Thromb Hemost 2019;25:1076029619828839.

60. Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 1997;17:646-53.

61. Weber A, Köppen HO, Schrör K. Platelet-derived microparticles stimulate coronary artery smooth muscle cell mitogenesis by a PDGF-independent mechanism. Thromb Res 2000;98:461-6.

62. Oggero S, Austin-Williams S, Norling LV. The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front Pharmacol 2019;10:1479.

63. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008;173:1210-9.

64. Ettelaie C, Su S, Li C, Collier ME. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc Res 2008;76:152-60.

65. Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci 2019;132:jcs222406.

66. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018;188:1-11.

67. Dorai T, Shah A, Summers F, Mathew R, Huang J, et al. NRH:Quinone Oxidoreductase 2 (NQO2) and Glutaminase (GLS) both play a role in large extracellular vesicles (LEV) formation in preclinical LNCaP-C4-2B prostate cancer model of progressive metastasis. Prostate 2018;78:1181-95.

68. Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 2004;95:209-14.

69. Li L, Wang R, Jia Y, Rong R, Xu M, et al. Exosomes derived from mesenchymal stem cells ameliorate renal ischemic-reperfusion injurythrough inhibiting inflammation and cell apoptosis. Front Med 2019;6:269.

70. Song YS, Joo HW, Park IH, Shen GY, Lee Y, et al. Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS One 2017;12:e0179972.

71. Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 2019;123:74-80.

72. Sun Y, Shi H, Yin S, Ji C, Zhang X, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018;12:7613-628.

73. Qiu G, Zheng G, Ge M, Wang J, Huang R, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Therap 2018;9:320.

74. Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015;40:82-8.

75. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013;10:301-12.

76. Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 2013;8:e68451.

77. Sammour I, Somashekar S, Huang J, Batlahally S, Breton M, et al. The effect of gender on mesenchymal stem cell (MSC) efficacy in neonatal hyperoxia-induced lung injury. PloS One 2016;11:e0164269.

78. Zeller CN, Wang Y, Markel TA, Weil B, Abarbanell A, et al. Role of tumor necrosis factor receptor 1 in sex differences of stem cell mediated cardioprotection. Ann Thorac Surg 2009;87:812-9.

79. Wang L, Gu H, Turrentine M, Wang M. Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery 2014;156:243-52.

80. Matsumoto T, Kubo S, Meszaros LB, Corsi KA, Cooper GM, et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum 2008;58:3809-19.

81. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005;25:1512-8.

82. Blair LA, Haven AK, Bauer NN. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium. Respir Res 2016;17:133.

83. Nadaud S, Poirier O, Girerd B, Blanc C, Montani D, et al. Small platelet microparticle levels are increased in pulmonary arterial hypertension. Eur J Clin Invest 2013;43:64-71.

84. Diehl P, Aleker M, Helbing T, Sossong V, Germann M, et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 2011;31:173-9.

85. Amabile N, Heiss C, Chang V, Angeli FS, Damon L, et al. Increased CD62e (+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 2009;28:1081-6.

86. Tual-Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, et al. Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 2010;182:261-8.

87. Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 2008;177:536-43.

88. Kosanovic D, Deo U, Gall H, Selvakumar B, Herold S, et al. Enhanced circulating levels of CD3 cells-derived extracellular vesicles in different forms of pulmonary hypertension. Pulm Circ 2019;9:2045894019864357.

89. Zhao L, Luo H, Li X, Li T, He J, et al. Exosomes derived from human pulmonary artery endothelial cells shift the balance between proliferation and ppoptosis of smooth muscle cells. Cardiology 2017;137:43-53.

90. Jenkins NT, Padilla J, Boyle LJ, Credeur DP, Laughlin MH, et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium. Hypertension 2013;61:615-21.

91. Lin ZB, Ci HB, Li Y, Cheng TP, Liu DH, et al. Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med 2017;15:4.

92. Smadja DM, Gaussem P, Mauge L, Lacroix R, Gandrille S, et al. Comparison of endothelial biomarkers according to reversibility of pulmonary hypertension secondary to congenital heart disease. Ped Cardiol 2010;31:657-62.

93. Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, et al. Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ 2011;18:549-62.

94. Lavoie JR, Ormiston ML, Perez-Iratxeta C, Courtman DW, Jiang B, et al. Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation 2014;129:2125-35.

95. Ferrer E, Dunmore BJ, Hassan D, Ormiston ML, Moore S, et al. A potential role for exosomal translationally controlled tumor protein export in vascular remodeling in pulmonary arterial hypertension. Am J Respir Cart Care Med 2018;59:467-78.

96. Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, et al. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 2015;117:870-83.

97. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, et al. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 2008;142:627-37.

98. Helenius MH, Vattulainen S, Orcholski M, Aho J, Komulainen A, et al. Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2015;308:L1046-57.

99. Visovatti SH, Hyman MC, Bouis D, Neubig R, McLaughlin VV, et al. Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS One 2012;7:e40829.

100. Dereddy N, Huang J, Erb M, Guzel S, Wolk JH, et al. Associated inflammation or increased flow-mediated shear stress, but not the pressure alone disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2012;2:492-500.

101. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 2008;177:1268-75.

102. Murakami K, Mathew R, Farahami R, Peng H, Olson SC, et al. Smurf-1 ubiquitin ligase causes downregulation of BMP recptors and is induced in monocrotaline and hypoxiamodles of pulmonary arterial hypertension. Exp Biol Med 2010;235:805-13.

103. Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 2002;105:1672-8.

104. Oliveira SD, Castellon M, Chen J, Bonini MG, Gu X, et al. Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-β-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2017;312:L760-71.

105. Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, et al. Injury-induced shedding of extracellular vesicles depletes endothelial cells of cav-1 (Caveolin-1) and enables TGF-β (transforming growth factor-β)-dependent pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2019;39:1191-202.

106. Patel HH, Zhang S, Murray F, Suda RY, Head BP, et al. Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 2007;21:2970-9.

107. de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, et al. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodeling. Cell Communication Signaling 2019;17:143.

108. Welch-Reardon KM, Wu N, Hughes CC. A role for partial endothelial-mesenchymal transitions in angiogenesis? Areterioscler Thromb Vasc Biol 2015;35:303-8.

109. Zhu L, Xiao R, Zhang X, Lang Y, Liu F, et al. Supermine on endothelial extracellular vesicles mediates smoking-induced pulmonary hypertension partially through calcium-sensing receptor. Arterioscler Thromb Vasc Biol 2019;39:482-95.

110. Wang P, Zhang C, Li J, Luo L, Zhang S, et al. .

111. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006;114:1181-5.

112. Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 2011;29:99-107.

113. Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, et al. Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 2010;105:409-17.

114. Luo L, Zheng W, Lian G, Chen H, Li L, et al. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2018;41:51-60.

115. Umar S, de Visser YP, Steendijk P, Schutte CI, Laghmani EH, et al. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2009;297:H1606-16.

116. Liu K, Liu R, Cao G, Sun H, Wang X, et al. Adipose-derived stromal cell autologous transplantation ameliorates pulmonary arterial hypertension induced by shunt flow in rat models. Stem Cells Dev 2011;20:1001-10.

117. Tan R, Li J, Peng X, Zhu L, Cai L, et al. GAPDH is critical for superior efficacy of female bone marrow-derived mesenchymal stem cells on pulmonary hypertension. Cardiovasc Res 2013;100:19-27.

118. Crisostomo PR, Markel TA, Wang M, Lahm T, Lillemoe KD, et al. In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 2007;142:215-21.

119. Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 2016;110:319-30.

120. Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 2014;35:1121-8.

121. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 2016;129:2182-9.

122. Liu Z, Liu J, Xiao M, Wang J, Yao F, et al. Mesenchymal stem cell-derived microvesicles alleviate pulmonary arterial hypertension by regulating renin-angiotensin system. J Am Soc Hypertens 2018;12:470-8.

123. Liu R, Shen H, Ma J, Sun L, Wei M. Extracellular vesicles derived from adpose mesenchymal stem cells regulate the phenotype of smooth muscle cells to limit intimal hyperplasia. Cardiovasc Drug Therapy 2016;30:111-8.

124. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012;126:2601-11.

125. Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, et al. Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. Am J Respir Cell Mol Biol 2019. Epub ahead of print. doi: org/10.1165/rcmb.2019-0154OC

126. Hogan SE, Rodriguez-Salazar MP, Cheadle J, Glenn R, Medrano, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019;316:L723-37.

127. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary. Pulm Circ 2012;2:170-81.

128. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Ped 2014;164:966-72.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/