REFERENCES
1. Moore JE Jr, Soares JS, Rajagopal KR. Biodegradable stents: biomechanical modelling challenges and opportunities. Cardiovasc Eng Technol 2010;1:52-65.
2. Hoffmann R, Mintz GS. Coronary in-stent restenosis - predictors, treatment and prevention. Eur Heart J 2000;21:1739-49.
3. Pfisterer ME. Late stent thrombosis after drug-eluting stent implantation for acute myocardial infarction: a new red flag is raised. Circulation 2008;118:1117-9.
4. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. J Am Med Assoc 2005;293:2126-30.
5. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48:193-202.
6. Yang TH, Kim DI, Park SG, Seo JS, Cho HJ, Seol SH, Kim SM, Kim DK, Kim DS. Clinical characteristics of stent fracture after sirolimus- eluting stent implantation. Int J Cardiol 2009;131:212-6.
7. Flege C, Vogt F, Höges S, Jauer L, Borinski M, Schulte VA, Hoffmann R, Poprawe R, Meiners W, Jobmann M, Wissenbach K, Blindt R. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. J Mater Sci Mater Med 2013;24:241-55.
9. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 2011;123:779-97.
10. Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol 2006;18:70-4.
11. Grabow N, Bünger CM, Schultze C, Schmohl K, Martin DP, Williams SF, Sternberg K, Schmitz KP. A biodegradable slotted tube stent based on poly (L-lactide) and poly (4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 2007;35:2031-8.
12. Grabow N, Bünger CM, Sternberg K, Mews S, Schmohl K, Schmitz KP. Mechanical properties of a biodegradable balloon-expandable stent from poly (L-lactide) for peripheral vascular applications. J Med Devices 2007;1:84-8.
13. Schmidt W, Behrens P, Brandt-Wunderlich C, Siewert S, Grabow N, Schmitz KP. In vitro performance investigation of bioresorbable scaffolds-standard tests for vascular stents and beyond. Cardiovasc Revasc Med 2016;17:375-83.
14. Ormiston JA, Webber B, Ubod B, Darremont O, Webster MW. An independent bench comparison of two bioresorbable drug-eluting coronary scaffolds (Absorb and DESolve) with a durable metallic drug-eluting stent (ML8/Xpedition). EuroIntervention 2015;11:60-7.
15. Welch TR, Eberhart RC, Reisch J, Chuong CJ. Influence of thermal annealing on the mechanical properties of PLLA coiled stents. Cardiovasc Eng Technol 2014;5:270-80.
16. Xu X, Liu T, Zhang K, Liu S, Shen Z, Li Y, Jing X. Biodegradation of poly (l-lactide-co-glycolide) tube stents in bile. Polym Degrad Stab 2008;93:811-7.
17. Hadaschik BA, Paterson RF, Fazli L, Clinkscales KW, Shalaby SW, Chew BH. Investigation of a novel degradable ureteral stent in a porcine model. J Urol 2008;180:1161-6.
18. Yang G, Xie H, Huang Y, Lv Y, Zhang M, Shang Y, Zhou J, Wang L, Wang JY, Chen F. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: an in vitro experiment. J Biomater Polym 2017;31:1235-44.
19. Gong Y, Zhou Q, Gao C, Shen J. In vitro and in vivo degradability and cytocompatibility of poly (l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterials 2007;3:531-40.
20. Liu YS, Huang QL, Kienzle A, Müller WEG, Feng QL. In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater Sci Eng C 2014;38:227-34.
21. Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K. Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP 2016;49:33-8.
22. Zamiri P, Kuang Y, Sharma U, Ng TF, Busold RH, Rago AP, Core LA, Palasis M. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials 2010;31:7847-55.
23. Agrawal CM, Haas KF, Leopold DA, Clark HG. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Biomaterials 1992;13:176-82.
24. Zilberman M, Nelson KD, Eberhart RC. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J Biomed Mater Res B 2005;74:792-9.
25. Nuutinen JP, Clerc C, Reinikainen R, Törmälä P. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J Biomate Sci 2003;14:255-66.
26. Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly (lactic acid). Adv Mater 2014;26:6905-11.
27. Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, Onuma Y, Garcia-Garcia HM, McGreevy R, Veldhof S. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008;371:899-907.
28. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis clinical perspective. Circulation 2010;122:2301-12.
29. Serruys PW, Ormiston J, van Geuns RJ, de Bruyne B, Dudek D, Christiansen E, Chevalier B, Smits P, McClean D, Koolen J, Windecker S. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis. J Ame Col Cardio 2016;67:766-76.
30. Lane JP, Perkins LE, Sheehy AJ, Pacheco EJ, Frie MP, Lambert BJ, Rapoza RJ, Virmani R. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. Cardiovas Interven 2014;7:688-95.
31. Chua SD, Mac Donald BJ, Hashmi MSJ. Finite element simulation of stent and balloon interaction. J Mater Pro Tech 2003;143:591-7.
32. Lally C, Dolan F, Prendergast PJ. Cardiovascular stent design and vessel stresses: a nite element analysis. J Biomech 2005;38:1574-81.
33. Schiavone A, Zhao LG, Abdel-Wahab AA. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery -- nite element simulation. Mater Sci Eng C Mater Biol Appl 2014;42:479-88.
34. Pauck RG, Reddy BD. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med Eng Phys 2015;37:7-12.
35. Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech 2015;48:2012-8.
36. Wang Q, Fang G, Zhao Y, Wang G, Cai T. Computational and experimental investigation into mechanical performances of poly-L-lactide acid (PLLA) coronary stents. J Mech Behav Biomed Mater 2017;65:415-27.
37. Shanahan C, Tofail SA, Tiernan P. Viscoelastic braided stent: finite element modelling and validation of crimping behaviour. Mater Design 2017;121:143-53.
38. Schiavone A, Abunassar C, Hossainy S, Zhao LG. Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel. J Biomech 2016;49:2677-83.
39. Soares JS, Moore JE, Rajagopal KR. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J Med Devices 2010;4:410-7.
40. Luo Q, Liu X, Li Z, Huang C, Zhang W, Meng J, Chang Z, Hua Z. Degradation model of bioabsorbable cardiovascular stents. PLoS One 2014;9:e110278.
41. Qiu T, He R, Abunassar C, Hossainy S, Zhao LG. Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessel. J Mech Behav Biomed Mater 2017;78:254.
42. Farooq V, Gogas BD, Serruys PW. Restenosis delineating the numerous causes of drug-eluting stent restenosis. Circ Cardiovasc Interv 2010;4:195-205.
43. Imani SM, Goudarzi AM, Ghasemi SE, Kalani A, Mahdinejad J. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study. Proc Inst Mech Eng H 2014;228:996-1004.
44. Soares JS, Moore JE Jr, Rajagopal KR. Constitutive framework for biodegradable polymers with applications to biodegradable stents. Asaio 2008;54:295-301.
45. Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mechan Behar Biomed Mater 2011;4:451-60.
46. Grabow N, Bünger CM, Schultze C, Schmohl K, Martin DP, Williams SF, Sternberg K, Schmitz KP. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 2007;35:2031-8.
47. Grabow N, Schlun M, Sternberg K, Hakansson N, Kramer S, Schmitz KP. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. ASME J Biomechan Eng 2008;127:25-31.
48. Moore JE Jr, Soares JS, Rajagopal KR. Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovas Eng Tech 2015;1:52-65.
49. Wu W. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomateralia 2013;9:8730-9.