REFERENCES

1. Younus A, Aneni EC, Spatz ES, Osondu CU, Roberson L, et al. A systematic review of the prevalence and outcomes of ideal cardiovascular health in US and non-US populations. Mayo Clin Proc 2016;91:649-70.

2. Sotos-Prieto M, Mattei J, Cook NR, Hu FB, Willett WC, et al. Association between a 20-year cardiovascular disease risk score based on modifiable lifestyles and total and cause-specific mortality among US men and women. J Am Heart Assoc 2018;7:e010052.

3. Peters SAE, Muntner P, Woodward M. Sex differences in the prevalence of, and trends in, cardiovascular risk factors, treatment, and control in the United States, 2001 to 2016. Circulation 2019;139:1025-35.

4. Bress AP, Colantonio LD, Cooper RS, Kramer H, Booth JN 3rd, et al. Potential cardiovascular disease events prevented with adoption of the 2017 American college of cardiology/American heart association blood pressure guideline. Circulation 2019;139:24-36.

5. Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circ Res 2017;121:695-710.

6. Aggarwal M, Aggarwal B, Rao J. Integrative medicine for cardiovascular disease and prevention. Med Clin North Am 2017;101:895-923.

7. Shanmuganathan M, Vughs J, Noseda M, Emanuel C. Exosomes: basic biology and technological advancements suggesting their potential as ischemic heart disease therapeutics. Front Physiol 2018;9:1159.

8. Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem 2015;48:562-8.

9. Nawaz M, Shah N, Zanetti BR, Maugeri M, Silvestre RN, et al. Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 2018;7:E167.

10. La Marca V, Fierabracci A. Insights into the Diagnostic potential of extracellular vesicles and their miRNA signature from liquid biopsy as early biomarkers of diabetic micro/macrovascular complications. Int J Mol Sci 2017;18:E1974.

11. Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. The pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: Relevance to neurohumoral and inflammatory activation. BBA Clin 2015;4:69-75.

12. Caporali A, Martello A, Miscianinov V, Maselli D, Vono R, et al. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 2017;171:56-64.

13. De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 2015;6:203.

14. Berezin AE. Microparticles in chronic heart failure. Adv Clin Chem 2017;81:1-41.

15. Berezin AE, Kremzer AA, Cammarota G, Zulli A, Petrovic D, et al. Circulating endothelial-derived apoptotic microparticles and insulin resistance in non-diabetic patients with chronic heart failure. Clin Chem Lab Med 2016;54:1259-67.

16. Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, et al. Advances in exosomes technology. Clin Chim Acta 2019;493:14-9.

17. Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2018;74:66-77.

18. Hervera A, Santos CX, De Virgiliis F, Shah AM, Di Giovanni S. Paracrine mechanisms of redox signalling for postmitotic cell and tissue regeneration. Trends Cell Biol 2019; doi: 10.1016/j.tcb.2019.01.006.

19. Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, et al. Physiological impact of extracellular vesicles on the female reproductive system; highlights possible restorative effects on female age-related fertility. Biofactors 2019; doi: 10.1002/biof.1497.

20. Navarro A, Molins L, Marrades RM, Moises J, Viñolas N, et al. Exosome Analysis in Tumor-Draining Pulmonary Vein Identifies NSCLC Patients with Higher Risk of Relapse after Curative Surgery. Cancers (Basel) 2019;11:E249.

21. Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, et al. Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol 2019; doi: 10.1002/jcp.28374.

22. Yang L, Zhu J, Zhang C, Wang J, Yue F, et al. Stem cell-derived extracellular vesicles for myocardial infarction: a meta-analysis of controlled animal studies. Aging (Albany NY) 2019;11:1129-50.

23. Bei Y, Das S, Rodosthenous RS, Holvoet P, Vanhaverbeke M, et al. Extracellular vesicles in cardiovascular theranostics. Theranostics 2017;7:4168-82.

24. Connor DE, Exner T, Ma DD, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent pro-coagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010;103:1044-52.

25. Biró E, Akkerman JW, Hoek FJ, Gorter G, Pronk LM, Sturk A, et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost 2005;3:2754-63.

26. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012;93:633-44.

27. Habersberger J, Strang F, Scheichl A, Htun N, Bassler N, et al. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc Res 2012;96:64-72.

28. Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000;95:1317-23.

29. Dinkla S, van Cranenbroek B, van der Heijden WA, He X, Wallbrecher R, et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016;127:1976-86.

30. Baker N, O’Meara SJ, Scannell M, Maderna P, Godson C. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. J Immunol 2009;182:3819-26.

31. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004;124:376-84.

32. Kenari AN, Kastaniegaard K, Greening DW, Shambrook M, Stensballe A, et al. Exosome-mimetic nanovesicles contain distinct proteome and post-translational modified protein cargo, in comparison to exosomes. Proteomics 2019;19:e1800161.

33. Vagner T, Chin A, Mariscal J, Bannykh S, Engman D, et al. Protein composition reflects extracellular vesicle heterogeneity. Proteomics 2019;19:e1800167.

34. van der Pol E, Böing AN, Gool EL, Nieuwland R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost 2016;14:48-56.

35. Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front Cardiovasc Med 2017;4:74.

36. Aatonen M, Valkonen S, Böing A, Yuana Y, Nieuwland R, et al. Isolation of platelet-derived extracellular vesicles. Methods Mol Biol 2017;1545:177-88.

37. Hedley BD, Llewellyn-Smith N, Lang S, Hsia CC, MacNamara N, et al. Combined accurate platelet enumeration and reticulated platelet determination by flow cytometry. Cytometry B Clin Cytom 2015;88:330-7.

38. Bennett JS. The molecular biology of platelet membrane proteins. Semin Hematol 1990;27:186-204.

39. Clemetson KJ, Clemetson JM. Platelet GPIb complex as a target for anti-thrombotic drug development. Thromb Haemost 2008;99:473-9.

40. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 2014;111:14888-93.

41. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews 2012;64:676-705.

42. Liu C, Zhao J, Tian F, Chang J, Zhang W, Sun J. λ-DNA and aptamer mediated sorting and analysis of extracellular vesicles. J Am Chem Soc 2019;141:3817-21.

43. Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets 2017;28:256-62.

44. Lacroix R, Robert S, Poncelet P, Kasthuri R, Key N, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and haemostasis SSC collaborative workshop. J Thromb Haemost 2010;8:2571-4.

45. Tao SC, Guo SC, Zhang CQ. Platelet-derived extracellular vesicles: an emerging therapeutic approach. Int J Biol Sci 2017;13:828-34.

46. Zaldivia MTK, Hering D, Marusic P, Sata Y, Lee R, et al. Successful renal denervation decreases the platelet activation status in hypertensive patients. Cardiovasc Res 2019; doi: 10.1093/cvr/cvz033.

47. Zaldivia MT, Rivera J, Hering D, Marusic P, Sata Y, et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 2017;69:323-31.

48. Barnes JN, Harvey RE, Miller KB, Jayachandran M, Malterer KR, et al. Cerebrovascular reactivity and vascular activation in postmenopausal women with histories of preeclampsia. Hypertension 2018;71:110-7.

49. Van Wijk MJ, Van Bavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res 2003;59:277-87.

50. Yano Y, Kambayashi J, Shiba E, Sakon M, Oiki E, et al. The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane. Biochem J 1994;299:303-8.

51. Gemmel CH, Sefton MV, Yeo E. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem 1993;268:14586-9.

52. Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J, Heemskerk JW. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of the actin cytoskeleton. FEBS Lett 2006;580:5313-20.

53. Nomura S, Komiyama Y, Miyake T, Miyazaki Y, Kido H, et al. Amyloid-protein precursor-rich platelet microparticles in thrombotic disease. Thromb Haemost 1994;72:519-22.

54. Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004;10:171-8.

55. Barry OP, Practico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997;99:2118-27.

56. Garcia B, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet particle proteome. J Proteome Res 2005;4:1516-21.

57. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008;111:5028-36.

58. Gilani SI, Weissgerber TL, Garovic VD, Jayachandran M. Preeclampsia and extracellular vesicles. Curr Hypertens Rep 2016;18:68.

59. Stepanian A, Bourguignat L, Hennou S, Coupaye M, Hajage D, Salomon L, et al. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring) 2013;21:2236-43.

60. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003;41:211-7.

61. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002;51:2840-5.

62. Bacha NC, Levy M, Guerin CL, Le Bonniec B, Harroche A, et al. Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatr Pulmonol 2019;54:66-72.

63. Rosińska J, Łukasik M, Kozubski W. The impact of vascular disease treatment on platelet-derived microvesicles. Cardiovasc Drugs Ther 2017;31:627-44.

64. Berkels R, Egink G, Marsen TA, Bartels H, Roesen R, et al. Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms. Hypertension 2001;37:240-5.

65. Labiós M, Martínez M, Gabriel F, Guiral V, Ruiz Aja S, et al. Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens 2004;17:757-63.

66. Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanoya G, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg 2019; doi: 10.1097/TA.0000000000002230.

67. Nomura S, Suzuki M, Katsura K, et al. Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis 1995;116:235-40.

68. Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004;104:1361-8.

69. Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014;28:155-66.

70. Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 2005;94:488-92.

71. Suades R, Padró T, Alonso R, Mata P, Badimon L. High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thromb Haemost 2015;114:1310-21.

72. van der Zee PM, Biró E, Ko Y, de Winter RJ, Hack CE, et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 2006;52:657-64.

73. Loguinova M, Pinegina N, Kogan V, Vagida M, Arakelyan A, et al. Monocytes of Different Subsets in Complexes with Platelets in Patients with Myocardial Infarction. Thromb Haemost 2018;118:1969-81.

74. Min PK, Kim JY, Chung KH, Lee BK, Cho M, et al. Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction. Atherosclerosis 2013;227:323-8.

75. Vagida MS, Arakelyan A, Lebedeva AM, Grivel JC, Shpektor AV, et al. Analysis of Extracellular Vesicles Using Magnetic Nanoparticles in Blood of Patients with Acute Coronary Syndrome. Biochemistry (Mosc) 2016;81:382-91.

76. Jung C, Sörensson P, Saleh N, Arheden H, Rydén L, et al. Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction. Atherosclerosis 2012;221:226-31.

77. Chiva-Blanch G, Laake K, Myhre P, Bratseth V, Arnesen H, et al. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One 2017;12:e0172558.

78. Suades R, Padró T, Vilahur G, Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost 2012;108:1208-19.

79. Michelsen AE, Brodin E, Brosstad F, Hansen JB. Increased level of platelet microparticles in survivors of myocardial infarction. Scand J Clin Lab Invest 2008;68:386-9.

80. Liu M, Wang Y, Zhu Q, Zhao J, Wang Y, et al. Protective effects of circulating microvesicles derived from ischemic preconditioning on myocardial ischemia/reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Apoptosis 2018;23:436-48.

81. Porto I, Biasucci LM, De Maria GL, Leone AM, Niccoli G, et al. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur Heart J 2012;33:2928-38.

82. Alexandru N, Andrei E, Dragan E, Georgescu A. Interaction of platelets with endothelial progenitor cells in experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biol Cell 2015;107:189-204.

83. Berezin AE. Are endothelial cell-derived microparticles predictive biomarkers in cardiovascular diseases? Atherosclerosis: open Access 2015;1:e101-3.

84. Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 2010;122:495-506.

85. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002;30:450-9.

86. Ohtsuka M, Sasaki K, Ueno T, Seki R, Nakayoshi T, et al. Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients. Atherosclerosis 2013;227:275-82.

87. Chen BA, Zhong YJ, Huang CY, Li CP, Shi GY, et al. Effects of platelet-derived membrane microparticles on angiogenesis in chick chorioallantoic membranes. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007;15:1070-3.

88. Ma F, Liu H, Shen Y, Zhang Y, Pan S. Platelet-derived microvesicles are involved in cardioprotective effects of remote preconditioning. Int J Clin Exp Pathol 2015;8:10832-9.

89. Helal O, Defoort C, Robert S, Marin C, Lesavre N, et al. Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: relationship with oxidative stress. Nutr Metab Cardiovasc Dis 2011;21:665-71.

90. Connolly KD, Willis GR, Datta Dev BN, et al. Lipoprotein apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia. J Lipid Res 2014;55:2064-72.

91. Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggest a mechanism for atherothrombotic disease in obesity. J Clin Invest 2001;108:1533-40.

92. Nakata M, Yada T, Soejima N, Maruyama I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999;48:426-9.

93. Lukasik M, Michalak S, Dworacki G, Kaczmarek M, Watala C, et al. Reactive leptin resistance and the profile of platelet activation in acute ischaemic stroke patients. Thromb Haemost 2012;108:107-18.

94. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T, et al. Activated platelet and oxidized LDL induce endothelial membrane vesiculation: clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes. Clin Appl Thromb Hemost 2004;10:205-15.

95. Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost 2006;4:1003-10.

96. Heinrich LF, Andersen DK, Cleasby ME, Lawson C. Long-term high-fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br J Nutr 2015;113:1704-11.

97. Pirro M, Schillaci G, Paltriccia R, Bagaglia F, Menecali C, et al. the Increased ratio of CD31+/CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia. Arterioscler Thromb Vasc Biol 2006;26:2530-5.

98. Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY. Plasma von Willebrand factor and soluble p-selectin as indices of endothelial damage and platelet activation in 1321 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors. Circulation 2002;106:1962-7.

99. Siwaponanan P, Keawvichit R, Udompunturak S, Hunnangkul S, Reesukumal K, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation. Clin Cardiol 2019;42:425-31.

100. Jesel L, Abbas M, Toti F, Cohen A, Arentz T, et al. Microparticles in atrial fibrillation: a link between cell activation or apoptosis, tissue remodeling and thrombogenicity. Int J Cardiol 2013;168:660-9.

101. Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, et al. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res 2009;31:799-806.

102. Choudhury A, Chung I, Blann AD, Lip GYH. Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy. Chest 2007;131:809-15.

103. Choudhury A, Chung I, Blann AD, Lip GY. Platelet surface CD62P and CD63, mean platelet volume, and soluble/platelet P-selectin as indexes of platelet function in atrial fibrillation: a comparison of “healthy control subjects” and “disease control subjects” in sinus rhythm. J Am Coll Cardiol 2007;49:1957-64.

104. Tan KT, Tayebjee MH, Lim HS, Lip GY. Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels. Diabet Med 2005;22:1657-62.

105. Kamath S, Blann AD, Chin BS, Lanza F, Aleil B, et al. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. Eur Heart J 2002;23:1788-95.

106. Choudhury A, Chung I, Blann A, Lip GY. Platelet adhesion in atrial fibrillation. Thromb Res 2007;120:623-9.

107. Berezin AE. Circulating biomarkers in heart failure. Adv Exp Med Biol 2018;1067:89-108.

108. Popovic B, Zannad F, Louis H, Clerc-Urmès I, Lakomy C, et al. Endothelial-driven increase in plasma thrombin generation characterizing a new hypercoagulable phenotype in acute heart failure. Int J Cardiol 2019;274:195-201.

109. Roura S, Gálvez-Montón C, de Gonzalo-Calvo D, Valero AG, Gastelurrutia P, et al. Extracellular vesicles do not contribute to higher circulating levels of soluble LRP1 in idiopathic dilated cardiomyopathy. J Cell Mol Med 2017;21:3000-9.

110. Berezin AE. Prognostication in different heart failure phenotypes: the role of circulating biomarkers. J Circ Biomark 2016;5:6.

111. Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA. The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin 2014;3:18-24.

112. Arjmand S, Pardakhty A, Forootanfar H, Khazaeli P. A road to bring Brij52 back to attention: Shear stress sensitive Brij52 liposomal carriers for targeted drug delivery to obstructed blood vessels. Med Hypotheses 2018;121:137-41.

113. Viera AJ, Mooberry M, Key NS. Microparticles in cardiovascular disease pathophysiology and outcomes. J Am Soc Hypertens 2012;6:243-52.

114. Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, et al. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res 2009;31:799-806.

115. Periard D, Boulanger CM, Eyer S, Amabile N, Pugin P, et al. Are circulating endothelial-derived and platelet-derived microparticles a pathogenic factor in the cisplatin-induced stroke? Stroke 2007;38:1636-8.

Journal of Unexplored Medical Data
ISSN 2572-8180 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/