REFERENCES
1. Johnsen JA, Levine MW. Correlation of activity in neighbouring goldfish ganglion cells: relationship between latency and lag. J Physiol 1983;345:439-49.
2. Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Exp Syst Appl 2006;31:320-8.
3. Kalaska JF. What parameters of reaching are encoded by discharges of cortical cells. In: Humphrey DR, Freund JH, editors. Motor control: Concepts and Issues. Chichester: Wiley; 1991. pp. 307-30.
4. Fu QG, Flament D, Coltz JD, Ebner TJ. Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 1997;78:478-91.
5. Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y. Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 1991;11:1182-97.
6. Pang CC, Upton AR, Shine G, Kamath MV. A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng 2003;50:521-6.
7. Subasi A, Erçelebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 2005;78:87-99.
8. Fisher RS, Prince DA. Spike-wave rhythms in cat cortex induced by parenteral penicillin. II. Cellular features. Electroencephalogr Clin Neurophysiol 1977;42:625-39.
9. Marino J, Canedo A, Aguilar J. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat. Neuroscience 2000;95:657-73.
10. Sitnikova E. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review). Epilepsy Res 2010;89:17-26.
11. Cavelier P, Bossu JL. Dendritic low-threshold Ca2+ channels in rat cerebellar Purkinje cells: possible physiological implications. Cerebellum 2003;2:196-205.
12. Batuev AS, Lenkov DN, Pirogov AA. Postsynaptic responses of motor cortex neurons of cats to sensory stimulation of different modalities. Acta Neurobiol Exp (Wars) 1974;34:317-21.
15. Harding GW. The currents that flow in the somatosensory cortex during the direct cortical response. Exp Brain Res 1992;90:29-39.
16. Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science 2008;319:1108-11.
17. Güler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 2005;148:113-21.
18. Hsu WY. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. J Neurosci Methods 2010;189:295-302.
19. Pohl V, Fahr E. Neuro-fuzzy recognition of K-complexes in sleep EEG signals. Eng Med Biol Soc 1995;1:789-90.
20. Subasi A. Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput Biol Med 2007;37:227-44.
21. Tsoukalas LH, Uhrig RE. Fuzzy and neural approaches in engineering. New York: John Wiley & Sons, Inc; 1996.
22. Kim J, Kasabov N. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Netw 1999;12:1301-19.
23. Alcalá R, Alcalá-Fdez J, Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Transact Fuzzy Syst 2007;4:616-35.
24. Yager RR, Filev DP. Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 1994;2:209-19.
25. Chiu S. Method and software for extracting fuzzy classification rules by subtractive clustering. In: Fuzzy Information Processing Society. NAFIPS: Biennial Conference of the North American; 1996. pp. 461-5.
26. Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transact Syst Man Cybernet 1993;3:665-85.
27. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transact Syst Man Cybernet 1985;SMC-15:116-32.
28. Wang LX, Mendel JM. Generating fuzzy rules by learning from examples. IEEE Transact Syst Man Cybernet 1992;22:1414-27.
29. Kasabov NK, Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transact Fuzzy Syst 2002;2:144-54.
30. Tung SW, Quek C, Guan C. T2-HyFIS-yager: type 2 hybrid neural fuzzy inference system realizing yager inference. Fuzzy Syst 2009;FUZZ-IEEE 2009:80-5.
31. Yager RR, Filev DP. Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 1994;2:209-19.
32. Harding GW, Towe AL. An automated on-line, real-time laboratory for single neuron studies. Comput Biomed Res 1976;9:471-501.
33. The R Project for Statistical Computing. Available from: http://www.r-project.org/. [Last accessed on 21 Nov 2017].