REFERENCES

1. Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, Ramouz A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med 2017;8:34-8.

2. Hankey GJ. Stroke. Lancet 2017;389:641-54.

3. Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, et al. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 2012;123 Suppl 2:29-38.

4. Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 2014;8:319.

5. Jiang C, Kong W, Wang Y, Ziai W, Yang Q, et al. Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget 2017;8:3553-67.

6. Dokalis N, Prinz M. Resolution of neuroinflammation: mechanisms and potential therapeutic option. Semin Immunopathol 2019;41:699-709.

7. Javidi E, Magnus T. Autoimmunity after ischemic stroke and brain injury. Front Immunol 2019;10:686.

8. Malone K, Amu S, Moore AC, Waeber C. The immune system and stroke: from current targets to future therapy. Immunol Cell Biol 2019;97:5-16.

9. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019;565:246-50.

10. Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab 2013;33:37-47.

11. Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid dendritic cells protect against middle cerebral artery occlusion induced brain injury by priming regulatory T cells. Front Cell Neurosci 2020;14:8.

12. Liu X, Hu R, Pei L, Si P, Wang C, et al. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol 2020;328:113233.

13. Santamaria-Cadavid M, Rodriguez-Castro E, Rodriguez-Yanez M, Arias-Rivas S, Lopez-Dequidt I, et al. Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neurol 2020;20:68.

14. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 2012;18:911-7.

15. Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci 2019;140:94-101.

16. Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther 2014;8:2221-38.

17. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med 2002;8:1363-8.

18. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, et al. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 2001;21:5528-34.

19. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 2009;15:946-50.

20. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 2015;6:7360.

21. Benakis C, Brea D, Caballero S, Faraco G, Moore J, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 2016;22:516-23.

22. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, et al. IL-23 (Interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (Interleukin-17) response in stroke. Stroke 2018;49:155-64.

23. Mohammadi Shahrokhi V, Ravari A, Mirzaei T, Zare-Bidaki M, et al. IL-17A and IL-23: plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol Invest 2018;47:812-22.

24. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol 2015;129:625-37.

25. Ren H, Kong Y, Liu Z, Zang D, Yang X, et al. Selective NLRP3 (Pyrin Domain-Containing Protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke 2018;49:184-92.

26. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998;36:287-306.

27. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015;9:147.

28. Locatelli G, Theodorou D, Kendirli A, Jordao MJC, Staszewski O, et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci 2018;21:1196-208.

29. Shichita T, Ito M, Morita R, Komai K, Noguchi Y, et al. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med 2017;23:723-32.

30. Sakai S, Shichita T. Inflammation and neural repair after ischemic brain injury. Neurochem Int 2018;130:104316.

31. Tian X, An R, Luo Y, Li M, Xu L, et al. Tamibarotene improves hippocampus injury induced by focal cerebral ischemia-reperfusion via modulating PI3K/Akt pathway in rats. J Stroke Cerebrovasc Dis 2019;28:1832-40.

32. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013;4:2030.

33. Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediators Inflamm 2013;2013:895651.

34. Giraldi-Guimaraes A, de Freitas HT, Coelho Bde P, Macedo-Ramos H, Mendez-Otero R, et al. Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res 2012;1452:173-84.

35. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 2016;7:11499.

36. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003;278:43807-17.

37. Bazan NG, Eady TN, Khoutorova L, Atkins KD, Hong S, et al. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp Neurol 2012;236:122-30.

38. Wu Y, Ye XH, Guo PP, Xu SP, Wang J, et al. Neuroprotective effect of lipoxin A4 methyl ester in a rat model of permanent focal cerebral ischemia. J Mol Neurosci 2010;42:226-34.

39. Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, et al. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 2010;160:311-21.

40. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 2019;176:1143-57.e13.

41. Cowell RM, Xu H, Parent JM, Silverstein FS. Microglial expression of chemokine receptor CCR5 during rat forebrain development and after perinatal hypoxia-ischemia. J Neuroimmunol 2006;173:155-65.

42. Victoria ECG, de Brito Toscano EC, de Sousa Cardoso AC, da Silva DG, de Miranda AS, et al. Knockdown of C-C chemokine receptor 5 (CCR5) is protective against cerebral ischemia and reperfusion injury. Curr Neurovasc Res 2017;14:125-31.

43. Rawlinson C, Jenkins S, Thei L, Dallas ML, Chen R. Post-ischaemic immunological response in the brain: targeting microglia in ischaemic stroke therapy. Brain Sci 2020;10:159.

44. Tsuji S, Di Martino E, Mukai T, Tsuji S, Murakami T, et al. Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted mice. J Neuroinflammation 2020;17:111.

45. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752-8.

46. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014;505:223-8.

47. Nonaka S, Nakanishi H. Microglial clearance of focal apoptotic synapses. Neurosci Lett 2019;707:134317.

48. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, et al. Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 2020;180:833-46.e16.

49. De Geyter D, Stoop W, Sarre S, De Keyser J, Kooijman R. Neuroprotective efficacy of subcutaneous insulin-like growth factor-I administration in normotensive and hypertensive rats with an ischemic stroke. Neuroscience 2013;250:253-62.

50. Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodriguez-Perez AI. Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci 2017;9:365.

51. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010;87:779-89.

52. Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 2015;35:2133-45.

53. Doyle KP, Buckwalter MS. Does B lymphocyte-mediated autoimmunity contribute to post-stroke dementia? Brain Behav Immun 2017;64:1-8.

54. Rojas OL, Probstel AK, Porfilio EA, Wang AA, Charabati M, et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 2019;176:610-24.e18.

55. Planas AM, Gomez-Choco M, Urra X, Gorina R, Caballero M, et al. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol 2012;188:2156-63.

56. Cramer JV, Benakis C, Liesz A. T cells in the post-ischemic brain: troopers or paramedics? J Neuroimmunol 2019;326:33-7.

57. Clarkson BD, Ling C, Shi Y, Harris MG, Rayasam A, et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med 2014;211:595-604.

58. Lee HK, Keum S, Sheng H, Warner DS, Lo DC, et al. Natural allelic variation of the IL-21 receptor modulates ischemic stroke infarct volume. J Clin Invest 2016;126:2827-38.

59. Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol 2017;134:851-68.

60. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009;15:192-9.

61. Fu Y, Zhang N, Ren L, Yan Y, Sun N, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A 2014;111:18315-20.

62. Mracsko E, Liesz A, Stojanovic A, Lou WP, Osswald M, et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2014;34:16784-95.

63. Gelderblom M, Arunachalam P, Magnus T. Gammadelta T cells as early sensors of tissue damage and mediators of secondary neurodegeneration. Front Cell Neurosci 2014;8:368.

64. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012;120:3793-802.

65. Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 2012;32:598-611.

66. Zhang H, Xia Y, Ye Q, Yu F, Zhu W, et al. In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. J Neurosci 2018;38:10168-79.

67. Li P, Wang L, Zhou Y, Gan Y, Zhu W, et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke. J Am Heart Assoc 2017;6:e006387.

68. Liesz A, Kleinschnitz C. Regulatory T cells in post-stroke immune homeostasis. Transl Stroke Res 2016;7:313-21.

69. Xu X, Li M, Jiang Y. The paradox role of regulatory T cells in ischemic stroke. Scientific World Journal 2013;2013:174373.

70. Kipnis J, Schwartz M. Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+CD25+ regulatory T-cells at the crossroads of health and disease. Neuromolecular Med 2005;7:197-206.

71. Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nature immunology 2013;14:230-7.

72. McNeill A, Spittle E, Backstrom BT. Partial depletion of CD69low-expressing natural regulatory T cells with the anti-CD25 monoclonal antibody PC61. Scand J Immunol 2007;65:63-9.

73. Raposo C, Graubardt N, Cohen M, Eitan C, London A, et al. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci 2014;34:10141-55.

74. Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat Immunol 2017;18:1160-72.

75. Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol 2016;34:609-33.

76. Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol 2018;9:883.

77. Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol 2019;31:361-9.

78. Wang K, Yaghi OK, Spallanzani RG, Chen X, Zemmour D, et al. Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proc Natl Acad Sci U S A 2020;10:5402-8.

79. DiSpirito JR, Zemmour D, Ramanan D, Cho J, Zilionis R, et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci Immunol 2018;3:eeat5861.

80. Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A, et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 2017;47:268-83.e9.

81. Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 2017;20:674-80.

82. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 2015;85:703-9.

83. Guo S, Luo Y. Brain Foxp3(+) regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 2019;81:106027.

84. Xiao W, Guo S, Chen L, Luo Y. The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol 2019;333:576970.

85. Li XM, Wang XY, Feng XW, Shao MM, Liu WF, et al. Serum interleukin-33 as a novel marker for long-term prognosis and recurrence in acute ischemic stroke patients. Brain Behav 2019;9:e01369.

86. Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 2002;143:1748-60.

87. Klein M, Bopp T. Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front Immunol 2016;7:315.

88. Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4(+) T-cell subsets in multiple sclerosis patients. Eur J Immunol 2018;48:1376-88.

89. Gu SC, Wang CD. Early selective serotonin reuptake inhibitors for recovery after stroke: a meta-analysis and trial sequential analysis. J Stroke Cerebrovasc Dis 2018;27:1178-89.

90. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011;10:123-30.

91. FOCUS-Trial-Collaboration. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet 2019;393:265-74.

92. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 2005;50:287-98.

93. Xu Y, Meng C, Liu G, Yang D, Fu L, et al. Classically activated macrophages protect against lipopolysaccharide-induced acute lung injury by expressing amphiregulin in mice. Anesthesiology 2016;124:1086-99.

94. Abeysinghe HC, Phillips EL, Chin-Cheng H, Beart PM, Roulston CL. Modulating astrocyte transition after stroke to promote brain rescue and functional recovery: emerging targets include rho kinase. Int J Mol Sci 2016;17:288.

95. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541:481-7.

96. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 2006;12:829-34.

97. Kimura H, Schubert D. Schwannoma-derived growth factor promotes the neuronal differentiation and survival of PC12 cells. J Cell Biol 1992;116:777-83.

98. Zelenika D, Adams E, Humm S, Graca L, Thompson S, et al. Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol 2002;168:1069-79.

99. Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018;13:2029-37.

100. Zagon IS, Rahn KA, Bonneau RH, Turel AP, McLaughlin PJ. Opioid growth factor suppresses expression of experimental autoimmune encephalomyelitis. Brain Res 2010;1310:154-61.

101. Weir C, McNeill A, Hook S, Harvie M, La Flamme AC, et al. Critical role of preproenkephalin in experimental autoimmune encephalomyelitis. J Neuroimmunol 2006;179:18-25.

102. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012;486:549-53.

103. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 2018;38:121-32.

104. Yasuno F, Taguchi A, Yamamoto A, Kajimoto K, Kazui H, et al. Microstructural abnormality in white matter, regulatory T lymphocytes, and depressive symptoms after stroke. Psychogeriatrics 2014;14:213-21.

105. Swardfager W, Herrmann N, Andreazza AC, Swartz RH, Khan MM, et al. Poststroke neuropsychiatric symptoms: relationships with IL-17 and oxidative stress. Biomed Res Int 2014;2014:245210.

106. Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, et al. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci 2018;39:647-54.

107. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 2012;243:89-94.

108. Pang X, Qian W. Changes in regulatory T-cell levels in acute cerebral ischemia. J Neurol Surg A Cent Eur Neurosurg 2017;78:374-9.

109. Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res 2018;96:951-68.

110. Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, et al. Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 2015;33:1480-9.

111. Falk A, Frisen J. Amphiregulin is a mitogen for adult neural stem cells. J Neurosci Res 2002;69:757-62.

112. Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, et al. Potential of stem cell-based therapy for ischemic stroke. Front Neurol 2018;9:34.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/