REFERENCES
1. Tremblay MÈ, Lecours C, Samson L, Sánchez-Zafra V, Sierra A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Front Neuroanat 2015;9:45.
2. Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, et al. Microglia promote the death of developing Purkinje cells. Neuron 2004;41:535-47.
3. Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 2013;61:150-63.
4. Wakselman S, Béchade C, Roumier A, Bernard D, Triller A, et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008;28:8138-43.
5. Antony JM, Paquin A, Nutt SL, Kaplan DR, Miller FD. Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 2011;89:286-98.
6. Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013;33:4216-33.
7. Tong CK, Vidyadaran S. Role of microglia in embryonic neurogenesis. Exp Biol Med (Maywood) 2016;241:1669-75.
8. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 2014;34:2231-43.
9. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013;16:543-51.
10. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M. A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci 2015;35:11848-61.
11. Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM, et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet 2019;104:936-47.
12. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 2011;31:16241-50.
13. Vukovic J, Colditz MJ, Blackmore DG, Ruitenberg MJ, Bartlett PF. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci 2012;32:6435-43.
14. Šišková Z, Tremblay MÈ. Microglia and synapse: interactions in health and neurodegeneration. Neural Plast 2013;2013:425845.
16. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 2013;77:10-8.
17. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691-705.
18. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 2016;36:128-34.
19. Ziebell JM, Adelson PD, Lifshitz J. Microglia: dismantling and rebuilding circuits after acute neurological injury. Metab Brain Dis 2015;30:393-400.
20. Ikegami A, Haruwaka K, Wake H. Microglia: lifelong modulator of neural circuits. Neuropathology 2019;39:173-80.
21. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456-8.
22. Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease. FEBS J 2018;285:3566-75.
23. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007;131:1164-78.
24. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013;155:1596-609.
25. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 2019;25:227-40.
26. Shinozaki Y, Shibata K, Yoshida K, Shigetomi E, Gachet C, et al. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep 2017;19:1151-64.
27. Singh-Bains MK, Linke V, Austria MDR, Tan AYS, Scotter EL, et al. Altered microglia and neurovasculature in the Alzheimer’s disease cerebellum. Neurobiol Dis 2019;132:104589.
28. Zhao X, Eyo UB, Murugan M, Wu LJ. Microglial interactions with the neurovascular system in physiology and pathology. Dev Neurobiol 2018;78:604-17.
29. Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J 2019;38:e101997.
30. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841-5.
32. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013;16:1896-905.
33. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2014;17:131-43.
34. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014;159:1327-40.
35. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional sensitivities to ageing. Nat Neurosci 2016;19:504-16.
36. Sokolowski JD, Chabanon-Hicks CN, Han CZ, Heffron DS, Mandell JW. Fractalkine is a “find-me” signal released by neurons undergoing ethanol-induced apoptosis. Front Cell Neurosci 2014;8:360.
37. Fricker M, Oliva-Martín MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation 2012;9:196.
38. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990;39:151-70.
39. De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 2017;95:341-56.e6.
40. Yanguas-Casás N, Crespo-Castrillo A, de Ceballos ML, Chowen JA, Azcoitia I, et al. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid. Glia 2018;66:522-37.
41. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay MÈ. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol (Lond) 2017;595:1929-45.
42. Rigato C, Swinnen N, Buckinx R, Couillin I, Mangin JM, et al. Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 2012;32:11559-73.
43. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012;37:1050-60.
44. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 2012;13:753-60.
45. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 2016;19:504-16.
46. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012;120:948-63.
47. Posillico CK, Terasaki LS, Bilbo SD, Schwarz JM. Examination of sex and minocycline treatment on acute morphine-induced analgesia and inflammatory gene expression along the pain pathway in Sprague-Dawley rats. Biol Sex Differ 2015;6:33.
48. Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, et al. Sex-specific features of microglia from adult mice. Cell Rep 2018;23:3501-11.
49. Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun 2017;64:11-22.
50. Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep 2018;24:2773-83.e6.
51. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci 2013;33:2761-72.
52. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, et al. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018;134:305-10.
53. Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res 2020;15:773-82.
54. Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 2013;91:1143-51.
55. Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, et al. Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging. J Neuroinflammation 2017;14:141.
56. Puy L, MacLusky NJ, Becker L, Karsan N, Trachtenberg J, et al. Immunocytochemical detection of androgen receptor in human temporal cortex characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues. J Steroid Biochem Mol Biol 1995;55:197-209.
57. Mor G, Nilsen J, Horvath T, Bechmann I, Brown S, et al. Estrogen and microglia: a regulatory system that affects the brain. J Neurobiol 1999;40:484-96.
58. Crain JM, Watters JJ. Estrogen and P2 purinergic receptor systems in microglia: therapeutic targets for neuroprotection. Open Drug Discov J 2010;2:148-67.
59. Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, et al. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci 2001;21:1809-18.
60. Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia. Glia 2008;56:659-74.
61. Bollinger JL, Salinas I, Fender E, Sengelaub DR, Wellman CL. Gonadal hormones differentially regulate sex-specific stress effects on glia in the medial prefrontal cortex. J Neuroendocrinol 2019;31:e12762.
62. Bertolotto A, Caterson B, Canavese G, Migheli A, Schiffer D. Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain. J Histochem Cytochem 1993;41:481-7.
63. Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, et al. Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 2012;60:1930-43.
64. Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, et al. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 2015;760:129-35.
65. Silvin A, Ginhoux F. Microglia heterogeneity along a spatio-temporal axis: more questions than answers. Glia 2018;66:2045-57.
66. Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol 2011;7:25-40.
67. Imamura K, Ito M, Suzumura A, Asai J, Takahashi A. Generation and characterization of monoclonal antibodies against rat microglia and ontogenic distribution of positive cells. Lab Invest 1990;63:853-61.
68. Stowell RD, Wong EL, Batchelor HN, Mendes MS, Lamantia CE, et al. Cerebellar microglia are dynamically unique and survey Purkinje neurons in vivo. Dev Neurobiol 2018;78:627-44.
69. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, et al. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 2017;65:1504-20.
71. Diestel A, Troeller S, Billecke N, Sauer IM, Berger F, et al. Mechanisms of hypothermia-induced cell protection mediated by microglial cells in vitro. Eur J Neurosci 2010;31:779-87.
72. Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia 2016;64:826-39.
73. Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, et al. Synaptic elimination in neurological disorders. Curr Neuropharmacol 2019;17:1071-95.
74. Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 2018;38:2911-9.
75. Jackson J, Jambrina E, Li J, Marston H, Menzies F, et al. Targeting the synapse in Alzheimer’s disease. Front Neurosci 2019;13:735.
76. Stadelmann C, Albert M, Wegner C, Brück W. Cortical pathology in multiple sclerosis. Curr Opin Neurol 2008;21:229-34.
77. Campbell G, Licht-Mayer S, Mahad D. Targeting mitochondria to protect axons in progressive MS. Neurosci Lett 2019;710:134258.
78. Baalman K, Marin MA, Ho TS, Godoy M, Cherian L, et al. Axon initial segment-associated microglia. J Neurosci 2015;35:2283-92.
79. Clark KC, Josephson A, Benusa SD, Hartley RK, Baer M, et al. Compromised axon initial segment integrity in EAE is preceded by microglial reactivity and contact. Glia 2016;64:1190-209.
80. Benusa SD, George NM, Sword BA, DeVries GH, Dupree JL. Acute neuroinflammation induces AIS structural plasticity in a NOX2-dependent manner. J Neuroinflammation 2017;14:116.
81. Clark K, Sword BA, Dupree JL. Oxidative stress induces disruption of the axon initial segment. ASN Neuro 2017;9:1759091417745426.
82. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-8.
83. Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, et al. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014;2014:610343.
85. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014;6:13.
87. Zhou T, Huang Z, Sun X, Zhu X, Zhou L, et al. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat 2017;11:77.
88. Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 2017;62:29-40.
89. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013;4:385-401.
90. Rosi S. A polarizing view on posttraumatic brain injury inflammatory response. Brain Circ 2016;2:126-8.
91. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 2017;169:1276-90.e17.
92. Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 2018;22:832-47.
93. Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 2017;114:11524-9.
94. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566-81.e9.
95. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018;48:599.
96. Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci 2018;21:779-86.
97. Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, et al. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 2015;125:2161-70.
98. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 2015;160:1061-71.
99. Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 2016;44:505-15.
100. Chen SH, Oyarzabal EA, Hong JS. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol 2016;26:54-60.
101. Ransohoff RM, Khoury JE. Microglia in health and disease. Cold Spring Harb Perspect Biol 2016;8:a020560.
102. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, et al. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016;58:291-309.
103. Hool LC. Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol 2008;35:229-34.
104. Hool LC, Arthur PG. Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the L-type Ca2+ channel to β-adrenergic receptor stimulation in cardiac myocytes. Circ Res 2002;91:601-9.
105. Hudasek K, Brown ST, Fearon IM. H2O2 regulates recombinant Ca2+ channel α1C subunits but does not mediate their sensitivity to acute hypoxia. Biochem Biophys Res Commun 2004;318:135-41.
106. Mossakowski AA, Pohlan J, Bremer D, Lindquist R, Millward JM, et al. Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol 2015;130:799-814.
107. Benned-Jensen T, Christensen RK, Denti F, Perrier JF, Rasmussen HB, et al. Live imaging of Kv7.2/7.3 cell surface dynamics at the axon initial segment: high steady-state stability and calpain-dependent excitotoxic downregulation revealed. J Neurosci 2016;36:2261-6.
108. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, et al. ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb Cortex 2015;25:2282-94.
109. Evans MD, Sammons RP, Lebron S, Dumitrescu AS, Watkins TB, et al. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J Neurosci 2013;33:6950-63.
110. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, et al. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 2009;29:13242-54.
111. von Bernhardi R, Heredia F, Salgado N, Muñoz P. Microglia function in the normal brain. Adv Exp Med Biol 2016;949:67-92.
112. Bilimoria PM, Stevens B. Microglia function during brain development: new insights from animal models. Brain Res 2015;1617:7-17.
113. Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, et al. Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. eNeuro 2016;3:ENEURO.0004-16.2016.
114. Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 2012;23:1189-202.
115. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009;29:3974-80.
116. Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010;8:e1000527.
117. Beeton C, Garcia A, Chandy KG. Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. J Vis Exp 2007:224.
118. Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 2017;27:123-37.
119. Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 2012;15:1074-7.
120. Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, et al. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2015;63:423-40.
121. Qin L, Wu X, Block ML, Liu Y, Breese GR, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007;55:453-62.
122. Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, et al. The relevance of animal models in multiple sclerosis research. Pathophysiology 2011;18:21-9.
123. Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, et al. Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 2004;1:179-92.
124. Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, et al. Experimental models of demyelination and remyelination. Neurologia 2020;35:32-9.
125. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1-13.
126. Das A, Chai JC, Kim SH, Lee YS, Park KS, et al. Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genomics 2015;16:517.
127. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
128. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, et al. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 2017;65:1504-20.
129. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 1998;92:38-49.
130. Fjær S, Bø L, Lundervold A, Myhr KM, Pavlin T, et al. Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model. PLoS One 2013;8:e84162.
131. Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 1999;147:1145-52.
132. Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, et al. Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis. Brain 2010;133:389-405.
133. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008;26:317-25.
134. Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 1999;126:457-67.
135. Haure-Mirande JV, Audrain M, Fanutza T, Kim SH, Klein WL, et al. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol 2017;134:769-88.
136. Yamasaki R. Distinct roles of microglia and monocytes in central nervous system inflammation and degeneration. Clin Exp Neuroimmunol 2014;5:41-8.
137. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 2017;140:1900-13.
138. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell rna sequencing. Neuron 2019;101:207-23.e10.
139. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 2019;50:253-71.e6.
140. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992;70:31-46.
141. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 2016;113:E1738-46.
142. Park MJ, Park HS, You MJ, Yoo J, Kim SH, et al. Dexamethasone induces a specific form of ramified dysfunctional microglia. Mol Neurobiol 2019;56:1421-36.