REFERENCES

1. Priebe MM, Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, et al. Spinal cord injury medicine. 6. Economic and societal issues in spinal cord injury. Arch Phys Med Rehabil 2007;88:S84-8.

2. Merritt CH, Taylor MA, Yelton CJ, Ray SK. Economic impact of traumatic spinal cord injuries in the United States. Neuroimmunol Neuroinflammation 2019;6:9.

3. Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci Neuroecon 2017;6:15-29.

4. Tafrihi M, Hasheminasab E. miRNAs: biology, biogenesis, their web-based tools, and databases. Microrna 2019;8:4-27.

5. Shi Z, Zhou H, Lu L, Li X, Fu Z, et al. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017;127:1104-15.

6. Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 2009;219:424-9.

7. Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, et al. microRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012;7:e34534.

8. Ning S, Liu H, Gao B, Wei W, Yang A, et al. miR-155, miR-96 and miR-99a as potential diagnostic and prognostic tools for the clinical management of hepatocellular carcinoma. Oncol Lett 2019;18:3381-7.

9. Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P, et al. A common microRNA signature in mouse models of retinal degeneration. Exp Eye Res 2008;87:529-34.

10. Li R, Bao L, Hu W, Liang H, Dang X. Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects on a rat model of acute spinal cord injury. Tissue Cell 2019;57:22-33.

11. James ND, Bartus K, Grist J, Bennett DL, McMahon SB, et al. Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J Neurosci 2011;31:18543-55.

12. Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014;114:25-57.

13. Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 2003;42:169-85.

14. Hagen EM. Acute complications of spinal cord injuries. World J Orthop 2015;6:17-23.

15. Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop 2015;6:24-33.

16. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 2016;10:98.

17. Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. Inhibition of calpain-mediated apoptosis by E-64-d reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 2001;916:115-26.

18. Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 2016;173:681-91.

19. Ray SK, Samantaray S, Smith JA, Matzelle DD, Das A, et al. Inhibition of cysteine proteases in acute and chronic spinal cord injury. Neurotherapeutics 2011;8:180-6.

20. Ning B, Gao L, Liu RH, Liu Y, Zhang NS, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 2014;10:997-1006.

21. Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, et al. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014;109:22-31.

22. Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, et al. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. Rev Neurosci 2016;27:271-81.

23. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. microRNAs, macrocontrol: regulation of miRNA processing. RNA 2010;16:1087-95.

24. Madathil SK, Nelson PT, Saatman KE, Wilfred BR. MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 2011;33:21-6.

25. Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, et al. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014;8:53.

26. Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a Regulates the Inflammation of Spinal Cord Injury by Inhibiting the Expression of NEUROD4. Cell Physiol Biochem 2018;51:1921-31.

27. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 2018;126:39-43.

28. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019;565:246-50.

29. Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 2012;46:251-64.

30. Pogue AI, Cui JG, Li YY, Zhao Y, Culicchia F, et al. microRNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 2010;476:18-22.

31. Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, et al. Up-regulation of NF-κB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 2011;105:1434-7.

32. Wang CY, Yang SH, Tzeng SF. microRNA-145 as one negative regulator of astrogliosis. Glia 2015;63:194-205.

33. Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 2012;32:17935-47.

34. Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, et al. The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 2016;3:56.

35. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 2010;30:1839-55.

36. North HA, Pan L, McGuire TL, Brooker S, Kessler JA. β1-Integrin alters ependymal stem cell BMP receptor localization and attenuates astrogliosis after spinal cord injury. J Neurosci 2015;35:3725-33.

37. Shi Y, Zhao Y, Shao N, Ye R, Lin Y, et al. Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells. Oncol Lett 2017;13:4402-12.

38. Wang Z, Yao W, Li K, Zheng N, Zheng C, et al. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncol Lett 2017;13:4727-33.

39. Chakrabarti M, Banik NL, Ray SK. miR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons. Neuroscience 2014;256:322-33.

40. Chakrabarti M, Ray SK. Experimental procedures for demonstration of microRNA mediated enhancement of functional neuroprotective effects of estrogen receptor agonists. Methods Mol Biol 2016;1366:359-72.

41. Liu G, Detloff MR, Miller KN, Santi L, Houlé JD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 2012;233:447-56.

42. Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. Exp Neurol 2010;223:45-50.

43. Sun F, Park KK, Belin S, Wang D, Lu T, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 2011;480:372-5.

44. Han JM, Sahin M. TSC1/TSC2 signaling in the CNS. FEBS Lett 2011;585:973-80.

45. Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, et al. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J Pineal Res 2008;44:348-57.

46. Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, et al. Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine (Phila Pa 1976) 2014;39:1099-107.

47. Theis T, Yoo M, Park CS, Chen J, Kügler S, et al. Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Mol Neurobiol 2017;54:4659-71.

48. Liu Y, Han N, Li Q, Li Z. Bioinformatics analysis of microRNA time-course expression in brown rat (Rattus norvegicus): spinal cord injury self-repair. Spine (Phila Pa 1976) 2016;41:97-103.

49. Yuan S, Wang YX, Gong PH, Meng CY. miR-124 inhibits spinal neuronal apoptosis through binding to GCH1. Eur Rev Med Pharmacol Sci 2019;23:4564-74.

50. Lu XC, Zheng JY, Tang LJ, Huang BS, Li K, et al. miR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell Physiol Biochem 2015;35:246-58.

51. Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, et al. microRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011;33:1587-97.

52. Strickland ER, Woller SA, Garraway SM, Hook MA, Grau JW, et al. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Front Neural Circuits 2014;8:117.

53. Strickland ER, Woller SA, Hook MA, Grau JW, Miranda RC. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochem Int 2014;77:40-9.

54. Zhao Y, Zhang H, Zhang D, Yu CY, Zhao XH, et al. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury. Neural Regen Res 2015;10:1147-52.

55. von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, et al. Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One 2011;6:e17670.

56. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, et al. microRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 2011;186:146-60.

57. Andersen HH, Duroux M, Gazerani P. microRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol Dis 2014;71:159-68.

58. Banks SA, Pierce ML, Soukup GA. Sensational microRNAs: neurosensory roles of the microRNA-183 family. Mol Neurobiol 2019; doi: 10.1007/s12035-019-01717-3.

59. Pinchi E, Frati A, Cantatore S, D’Errico S, Russa R, et al. Acute spinal cord injury: a systematic review investigating miRNA families involved. Int J Mol Sci ;20:1841.

60. Huang Y, Zhu N, Chen T, Chen W, Kong J, et al. Triptolide suppressed the microglia activation to improve spinal cord injury through miR-96/IKKβ/NF-κB pathway. Spine (Phila Pa 1976) 2019;44:E707-14.

61. Kinoshita C, Aoyama K, Matsumura N, Kikuchi-Utsumi K, Watabe M, et al. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat Commun 2014;5:3823.

62. Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: a key role for miRNAs. Free Radic Biol Med 2018;119:17-33.

63. Guo Y, Liu H, Zhang H, Shang C, Song Y. miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Lett 2012;4:561-5.

64. Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, et al. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018;53:237-45.

65. Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, et al. miR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog 2015;54:1442-50.

66. Hong Y, Liang H,  Uzair-Ur-Rehman, Wang Y, Zhang W, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep 2016;6:37421.

67. Chen RX, Xia YH, Xue TC, Ye SL. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. Mol Med Rep 2012;5:800-4.

68. Xu D, He X, Chang Y, Xu C, Jiang X, et al. Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells. Oncol Rep 2013;29:653-61.

69. Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, et al. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One 2013;8:e72400.

70. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:11-22.

71. Zhang S, Huan W, Wei H, Shi J, Fan J, et al. FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J Cell Biochem 2013;114:354-65.

72. Wang Y, Liu Y, Chen Y, Shi S, Qin J, et al. Peripheral nerve injury induces down-regulation of FOXO3a and p27kip1 in rat dorsal root ganglia. Neurochem Res 2009;34:891-8.

73. Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, et al. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018;27:860-74.

74. Huang H, Tindall DJ. FOXO factors: a matter of life and death. Future Oncol 2006;2:83-9.

75. Maiese K. FOXO proteins in the nervous system. Anal Cell Pathol (Amst) 2015;2015:569392.

76. Lin H, Dai T, Xiong H, Zhao X, Chen X, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One 2010;5:e15797.

77. Song HM, Luo Y, Li DF, Wei CK, Hua KY, et al. microRNA-96 plays an oncogenic role by targeting FOXO1 and regulating AKT/FOXO1/Bim pathway in papillary thyroid carcinoma cells. Int J Clin Exp Pathol 2015;8:9889-900.

78. Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol 2006;29:643-8.

79. Marfè G, Tafani M, Fiorito F, Pagnini U, Iovane G, et al. Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis. PLoS One 2011;6:e27313.

80. Gao F, Wang W. microRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep 2015;11:1200-6.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/