fig3
Figure 3. A: following injury, trauma and ruptured blood vessels result in ischemia, anoxia, and inflammation. This environment leads to neuronal death and degeneration; B: the infusion of MSCs can be done in different locations. There is still disagreement regarding the number of cells and infusions, but MSCs from different sources can be used for treatment (umbilical cord, adipose tissue, and bone marrow); C: after infusion, MSCs change the injured environment by releasing anti-inflammatory (TNF-β1, IL-13, IL-18, CNTF, NT-3, and IL-10), neuroprotective (BDNF, GDNF, NGF, NT-1, NT-3, CNTF, and bFGF), and angiogenic cytokines (TIMP-1, VEGF, HGF, PDGF, IL-6, and IL-8). Cell survival, remyelination, and vascular repair can also be observed. MSCs: mesenchymal stromal cells; TNF-β1: transforming growth factor β1; IL-13: interleukin 13; IL-18: interleukin 18; CNTF: ciliary neurotrophic factor; IL-10: interleukin 10; BDNF: brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; NGF: nerve growth factor; NT-1: neurotrophin 1; NT-3: neurotrophin 3; bFGF: basic fibroblast growth factor; TIMP-1: tissue inhibitor of metalloproteinase-1; VEGF: vascular endothelial growth factor; HGF: hepatocyte growth factor; PDGF: platelet-derived growth factor; IL-6: interleukin 6; IL-8: interleukin 8