REFERENCES
1. Kapoor L, Thakur S. A survey on brain tumor detection using image processing techniques. Proceeding of 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence; 2017 Jan 12-13; Noida, India. IEEE; 2017. pp. 582-5.
2. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277-84.
3. Arora A, Roy P, MD S, Venktesan S, Babu R. k-NN based classification of brain MRI images using DWT and PCA to detect different types of brain tumor. Int J Med Res Health Sci 2017;6:15-20.
4. abta.org [Internet]. Chicago: American Brain Tumor Association; c2018 [cited 2018 Jun 13]. Available from: https://www.abta.org/.
5. Chaplot S, Patnaik LM, Jagannathan NR. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 2006;1:86-92.
6. Dasgupta A, Gupta T, Jalali R. Indian data on central nervous tumors: a summary of published work. South Asian J Cancer 2016;5:147-53.
7. Kharrat A, BenamraneN, Messaoud MB, Abid M. Detection of brain tumor in medical images. Proceeding of 3rd International Conference on Signals, Circuits and Systems; 2009 Nov 6-8; Medenine, Tunisia. IEEE; 2010. pp. 1-6.
8. von Gioi RG, Randall G. A sub-pixel edge detector: an implementation of the canny/devernay algorithm. Image Processing On Line 2017;7:347-72.
9. El-Dahshan ESA, Salem ABM, Younis TH. A hybrid technique for automatic MRI brain images classification. Studia Universitatis Babes-Bolyai: Series Informatica 2009;54:55-67.
10. Sengur A. An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Comput Biol Med 2008;38:329-38.