REFERENCES
1. Frost B, Diamond M. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 2010;11:155-9.
2. Sengupta U, Nilson A, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016;6:42-9.
3. Yin R, Tan L, Jiang T, Yu J. Prion-like mechanisms in Alzheimer's disease. Curr Alzheimer Res 2014;11:755-64.
6. Nelson R, Sawaya M, Balbirnie M, Madsen A, Riekel C, Grothe R, Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005;435:773-8.
7. Alonso A, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. PNAS 1994;91:5562-6.
8. Friedhoff P, von Bergena M, Mandelkowa EM, Mandelkow E. Structure of tau protein and assembly into paired helical filaments. Biochimica et Biophysica Acta 2000;1502:122-32.
9. Alonso A, Grundke-Iqbal I, Barra H, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. PNAS 1997;94:298-303.
10. Hoover B, Reed M, Su J, Penrod R, Kotilinek L, Grant M, Pitstick R, Carlson G, Lanier L, Yuan L, Ashe K, Liao D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010;68:1067-81.
11. Ittner L, Ke Y, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B, Christie M, Napier I, Eckert A, Staufenbiel M, Hardeman E, Götz J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 2010;142:387-97.
12. Kowall N, Kosik K. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Ann Neurol 1987;22:639-43.
13. Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns L. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging 2017;55:99-114.
14. Gambuzza M, Sofo V, Salmeri F, Soraci L, Marino S, Bramanti P. Toll-like receptors in Alzheimer's disease: a therapeutic perspective. CNS Neurol Disord Drug Targets 2014;13:1542-58.
15. Wang H-Y, Bakshi K, Frankfurt M, Stucky A, Goberdhan M, Shah S, Burns L. Reducing amyloid-related Alzheimer's disease pathogenesis by a small molecule targeting filamin A. J Neurosci 2012;32:9773-84.
16. Näslund J, Haroutunian V, Mohs R, Davis K, Davies P, Greengard P, Buxbaum J. Corrleation between elevated levels of amyolid beta-peptide in the brain and cognitive decline. JAMA 2000;283:1571-7.
17. Gandy S, Simon A, Steele J, Lublin A, Lah J, Walker L, Levey A, Krafft G, Levy E, Checler F, Glabe C, Bilker W, Abel T, Schmeidler J, Ehrlich M. Days-to-criterion as an indicator of toxicity associated with human Alzheimer amyloid-β oligomers. Ann Neurol 2010;68:220-30.
18. Stancu I-C, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. Mol Neurodegen 2014;9:51.
19. Medeiros R, Castello N, Cheng D, Kitazawa M, Baglietto-Vargas D, Green K, Esbenshade T, Bitner R, Decker M, LaFerla F. α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 2014;184:520-9.
20. Inestrosa N, Godoy J, Vargas J, Arrazola M, Rios J, Carvajal F, Serrano F, Farias G. Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation. Neuromolecular Med 2013;15:549-69.
21. Dziewczapolski G, Glogowski C, Masliah E, Heinemann S. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J Neurosci 2009;29:8805-15.
22. Ni R, Marutle A, Nordberg A. Modulation of α7 nicotinic acetylcholine receptor and fibrillar amyloid-β interactions in Alzheimer's disease brain. J Alzheimers Dis 2013;33:841-51.
23. Ondrejcak T, Wang Q, Kew J, Virley D, Upton N, Anwyl R, Rowan M. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aβ-mediated inhibition of LTP in the rat hippocampus. Eur J Pharmacol 2012;677:63-70.
24. D'Andrea M, Nagele R. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr Pharm Des 2006;12:677-84.
25. Tong M, Arora K, White M, Nichols R. Role of key aromatic residues in the ligand-binding domain of alpha7 nicotinic receptors in the agonist action of beta-amyloid. J Biol Chem 2011;286:34373-81.
26. Wang H, Lee D, Davis C, Shank R. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000;75:1155-61.
27. Wang H, Li W, Benedetti N, Lee D. α7 Nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 2003;278:31547-53.
28. Wang HY LD, D'Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 2000;275:5626-32.
29. Dineley K, Bell K, Bui D, Sweatt J. β-Amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in xenopus oocytes. J Biol Chem 2002;277:25056-61.
30. Hu M, Waring J, Gopalakrishnan M, Li J. Role of GSK-3beta activation and alpha7 nAChRs in Abeta(1-42)-induced tau phosphorylation in PC12 cells. J Neurochem 2008;106:1371-7.
31. Zhang L, Xie J, Yang J, Cao Y. Tyrosine phosphatase STEP61 negatively regulates amyloid β-mediated ERK/CREB signaling pathways via α7 nicotinic acetylcholine receptors. J Neurosci Res 2013;91:1581-90.
32. Wang HY, Li W, Benedetti N, Lee D. α7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 2003;278:31547-53.
33. Dineley K, Bell K, Bui D, Sweatt J. β-Amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in xenopus oocytes. J Biol Chem 2002;227:25056-61.
34. Wang HY, Bakshi K, Shen C, Frankfurt M, Trocme-Thibierge C, Morain P. S 24795 limits β-amyloid - α7 nicotinic receptor interaction and reduces Alzheimer's disease-like pathologies. Biol Psychiatry 2010;67:522-30.
35. Wang HY, Stucky A, Liu J, Shen C, Trocme-Thibierge C, Morain P. Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer's disease brain. J Neurosci 2009;35:10961-73.
36. Wang H, Lee D, D'Andrea M, Peterson P, Shank R, Reitz A. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 2000;275:5626-32.
37. Lauren J, Gimbel D, Nygaard H, Gilbert J, Strittmatter S. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009;457:1128-32.
38. Um J, Kaufman A, Kostylev M, Heiss J, Stagi M, Takahashi H, Kerrisk M, Vortmeyer A, Wisniewski T, Koleske A, Gunther E, Nygaard H, Strittmatter S. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron 2013;79:887-902.
39. Dinamarca M, Weinstein D, Monasterio O, Inestrosa N. The synaptic protein neuroligin-1 interacts with the amyloid β-peptide. Is there a role in Alzheimer's disease? Biochemistry 2011;50:8127-37.
40. Zheng-Fischhöfer Q, Biernat J, Mandelkow E, Illenberger S, Godemann R, Mandelkow E. Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 1998;252:542-52.
41. Wang J, Xia Y, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 2013;33:S123-39.
42. Oueslati A. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J Parkinsons Dis 2016;6:39-51.
43. Stossel T, Condeelis J, Cooley L, Hartwig J, Noegel A, Schleicher M, Shapiro S. Filamins as integrators of cell mechanics and signalling. Nature 2001;2:138-45.
44. Nakamura F, Stossel T, Hartwig J. The filamins: organizers of cell structure and function. Cell Adh Migr 2011;5:160-9.
45. Vadlamudi R, Li F, Adam L, Nguyen D, Ohta Y, Stossel T, Kumar R. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002;4:681-90.
46. Yue J, Huhn S, Shen Z. Complex roles of filamin-A mediated cytoskeleton network in cancer progression. Cell Biosci 2013;3:7.
47. Penzes P, Vanleeuwen J. Impaired regulation of synaptic actin cytoskeleton in Alzheimer's disease. Brain Res Rev 2011;67:184-92.
48. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal cocaine exposure upregulates BDNF-TrkB signaling. PLoS One 2016;11:e0160585.
49. Ui N. Conformational studies on proteins by isoelectric focusing. Ann N Y Acad Sci 1973;209:198-209.
50. Pace C, Grimsley G, Scholtz J. Protein ionizable groups: pK values and their contributions to protein stability and solubility. J Biol Chem 2009;284:13285-9.
51. Lilja A, Porras O, Storelli E, Nordberg A, Marutle A. Functional interactions of fibrillar and oligomeric amyloid-β with alpha7 nicotinic receptors in Alzheimer's disease. J Alzheimers Dis 2011;23:335-47.
52. Zhang L, Xie J, Yang J, Cao Y. Tyrosine phosphatase STEP61 negatively regulates amyloid β-mediated ERK/CREB signaling pathways via α7 nicotinic acetylcholine receptors. J Neurosci Res 2013;91:1581-90.
53. Snyder E, Nong Y, Almeida C, Paul S, Moran T, Choi E, Nairn A, Salter M, Lombroso P, Gouras G, Greengard P. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005;8:1051-8.
54. Wang H, Stucky A, Liu J, Shen C, Trocme-Thibierge C, Morain P. Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer's disease brain. J Neurosci 2009;35:10961-73.
55. Bloom G. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014;71:505-8.
56. Lloret A, Fuchsberger T, Giraldo E, Viña J. Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer's disease. Free Radic Biol Med 2015;83:186-91.
57. Talbot K, Wang H, Kazi H, Han L, Bakshi K, Stucky A, Fuino R, Kawaguchi K, Samoyedny A, Wilson R, Arvanitakis Z, Schneider J, Wolf B, Bennett D, Trojanowski J, Arnold S. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012;122:1316-38.
58. Bateman RJ, Xiong C, Benzinger T, Fagan A, Goate A, Fox N, Marcus D, Cairns NJ XX, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC; Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012;367:795-804.
59. Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter WZ, Weiner MW, Jack CR Jr, Jagust W, Toga AW, Lee VM, Shaw LM; Alzheimer's Disease Neuroimaging Initiative. Update on the biomarker core of the Alzheimer's disease neuroimaging initiative subjects. Alzheimers Dement 2010;6:230-8.