REFERENCES

1. Allikmets R, Gerrard B, Hutchinson A, Dean M. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet 1996;5:1649-55.

2. Frank NY, Pendse SS, Lapchak PH, et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 2003;278:47156-65.

3. Chen KG, Szakács G, Annereau JP, et al. Principal expression of two mRNA isoforms (ABCB 5α and ABCB 5β ) of the ATP-binding cassette transporter gene ABCB5 in melanoma cells and melanocytes. Pigment Cell Res 2005;18:102-12.

4. Frank NY, Frank MH. ABCB5 gene amplification in human leukemia cells. Leuk Res 2009;33:1303-5.

5. Abcb5 ATP-binding cassette, sub-family B member 5 [Mus musculus (house mouse)]. Available from: https://www.ncbi.nlm.nih.gov/gene/?term=AY766239. [Last accessed on 7 Aug 2024].

6. Kawanobe T, Kogure S, Nakamura S, et al. Expression of human ABCB5 confers resistance to taxanes and anthracyclines. Biochem Biophys Res Commun 2012;418:736-41.

7. Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 2006;7:S12.

8. Severin J, Lizio M, Harshbarger J, et al; FANTOM Consortium. Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 2014;32:217-9.

9. Dobson L, Reményi I, Tusnády GE. The human transmembrane proteome. Biol Direct 2015;10:31.

10. Baril SA, Gose T, Schuetz JD. How cryo-em has expanded our understanding of membrane transporters. Drug Metab Dispos 2023;51:904-22.

11. Moitra K, Scally M, McGee K, Lancaster G, Gold B, Dean M. Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms. PLoS One 2011;6:e16318.

12. Gerard L, Duvivier L, Fourrez M, et al. Identification of two novel heterodimeric ABC transporters in melanoma: ABCB5β/B6 and ABCB5β/B9. J Biol Chem 2024;300:105594.

13. Saeed MEM, Boulos JC, Machel K, et al. Expression of the stem cell marker ABCB5 in normal and tumor tissues. In Vivo 2022;36:1651-66.

14. Fischer S, Klüver N, Burkhardt-Medicke K, et al. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 2013;11:69.

15. Keniya MV, Holmes AR, Niimi M, et al. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5. Mol Pharm 2014;11:3452-62.

16. Robey RW, Robinson AN, Ali-Rahmani F, et al. Characterization and tissue localization of zebrafish homologs of the human ABCB1 multidrug transporter. Sci Rep 2021;11:24150.

17. Ford RC, Marshall-Sabey D, Schuetz J. Linker domains: why ABC transporters “Live in Fragments no Longer”. Trends Biochem Sci 2020;45:137-48.

18. Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005;65:4320-33.

19. Díaz-Anaya AM, Gerard L, Albert M, Gaussin JF, Boonen M, Gillet JP. The β isoform of human ATP-binding cassette B5 transporter, ABCB5β, localizes to the endoplasmic reticulum. Int J Mol Sci 2023;24:15847.

20. Chartrain M, Riond J, Stennevin A, et al. Melanoma chemotherapy leads to the selection of ABCB5-expressing cells. PLoS One 2012;7:e36762.

21. Téllez J, Romero I, Soares MJ, Steindel M, Romanha AJ. Knockdown of host antioxidant defense genes enhances the effect of glucantime on intracellular Leishmania braziliensis in human macrophages. Antimicrob Agents Chemother 2017;61:e02099-16.

22. Jongkhajornpong P, Nakamura T, Sotozono C, Nagata M, Inatomi T, Kinoshita S. Elevated expression of ABCB5 in ocular surface squamous neoplasia. Sci Rep 2016;6:20541.

23. Volpicelli ER, Lezcano C, Zhan Q, et al. The multidrug-resistance transporter ABCB5 is expressed in human placenta. Int J Gynecol Pathol 2014;33:45-51.

24. Ksander BR, Kolovou PE, Wilson BJ, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 2014;511:353-7.

25. Louphrasitthiphol P, Chauhan J, Goding CR. ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation. Pigment Cell Melanoma Res 2020;33:112-8.

26. O’Gorman MR, Thomas J. Isotype controls - time to let go? Cytometry 1999;38:78-80.

27. Edfors F, Hober A, Linderbäck K, et al. Enhanced validation of antibodies for research applications. Nat Commun 2018;9:4130.

28. Uhlen M, Bandrowski A, Carr S, et al. A proposal for validation of antibodies. Nat Methods 2016;13:823-7.

29. Kropf C, Fent K, Fischer S, Casanova A, Segner H. ABC transporters in gills of rainbow trout (Oncorhynchus mykiss). J Exp Biol 2020;223:jeb221069.

30. Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 2009;296:F459-69.

31. Norrick A, Esterlechner J, Niebergall-Roth E, et al. Process development and safety evaluation of ABCB5+ limbal stem cells as advanced-therapy medicinal product to treat limbal stem cell deficiency. Stem Cell Res Ther 2021;12:194.

32. Zheng M, Zhang H, Dill DL, et al. The role of Abcb5 alleles in susceptibility to haloperidol-induced toxicity in mice and humans. PLoS Med 2015;12:e1001782.

33. Schatton T, Yang J, Kleffel S, et al. ABCB5 identifies immunoregulatory dermal cells. Cell Rep 2015;12:1564-74.

34. Vander Beken S, de Vries JC, Meier-Schiesser B, et al. Newly defined ATP-binding cassette subfamily B member 5 positive dermal mesenchymal stem cells promote healing of chronic iron-overload wounds via secretion of interleukin-1 receptor antagonist. Stem Cells 2019;37:1057-74.

35. Kerstan A, Niebergall-Roth E, Esterlechner J, et al. Ex vivo-expanded highly pure ABCB5+ mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: process validation and first in-human data. Cytotherapy 2021;23:165-75.

36. Kerstan A, Dieter K, Niebergall-Roth E, et al. Translational development of ABCB5+ dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther 2022;13:455.

37. Begicevic RR, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18:2362.

38. Demeule M, Charfi C, Currie JC, et al. The TH1902 docetaxel peptide-drug conjugate inhibits xenografts growth of human SORT1-positive ovarian and triple-negative breast cancer stem-like cells. Pharmaceutics 2022;14:1910.

39. Zhang HL, Wang P, Lu MZ, Zhang SD, Zheng L. c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett 2019;17:4487-93.

40. Wilson BJ, Schatton T, Zhan Q, et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 2011;71:5307-16.

41. Lee CAA, Banerjee P, Wilson BJ, et al. Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem 2020;295:7774-88.

42. Cheung PF, Cheung TT, Yip CW, et al. Hepatic cancer stem cell marker granulin-epithelin precursor and β-catenin expression associate with recurrence in hepatocellular carcinoma. Oncotarget 2016;7:21644-57.

43. Wong NCL, Cheung PFY, Yip CW, et al. Antibody against granulin-epithelin precursor sensitizes hepatocellular carcinoma to chemotherapeutic agents. Mol Cancer Ther 2014;13:3001-12.

44. Cheung PF, Cheng CK, Wong NC, et al. Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 2011;6:e28246.

45. Milosevic V, Kopecka J, Salaroglio IC, et al. Wnt/IL-1β/IL-8 autocrine circuitries control chemoresistance in mesothelioma initiating cells by inducing ABCB5. Int J Cancer 2020;146:192-207.

46. Grimm M, Krimmel M, Polligkeit J, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur J Cancer 2012;48:3186-97.

47. Wang Y, Teng JS. Increased multi-drug resistance and reduced apoptosis in osteosarcoma side population cells are crucial factors for tumor recurrence. Exp Ther Med 2016;12:81-6.

48. Nair RM, Balla MM, Khan I, Kalathur RKR, Kondaiah P, Vemuganti GK. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer 2017;17:779.

49. Luo Y, Ellis LZ, Dallaglio K, et al. Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. J Invest Dermatol 2012;132:2440-50.

50. Sharma BK, Manglik V, Elias EG. Immuno-expression of human melanoma stem cell markers in tissues at different stages of the disease. J Surg Res 2010;163:e11-5.

51. Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature 2008;451:345-9.

52. Schatton T, Schütte U, Frank NY, et al. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 2010;70:697-708.

53. Wilson BJ, Saab KR, Ma J, et al. ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res 2014;74:4196-207.

54. Wang S, Tang L, Lin J, et al. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability. Biochem Biophys Res Commun 2017;492:18-26.

55. Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 2010;18:510-23.

56. Cheli Y, Bonnazi VF, Jacquel A, et al. CD271 is an imperfect marker for melanoma initiating cells. Oncotarget 2014;5:5272-83.

57. Girouard SD, Murphy GF. Melanoma stem cells: not rare, but well done. Lab Invest 2011;91:647-64.

58. Jordan CT. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 2009;4:203-5.

59. Huang F, Santinon F, Flores González RE, Del Rincón SV. Melanoma plasticity: promoter of metastasis and resistance to therapy. Front Oncol 2021;11:756001.

60. Al Hmada Y, Brodell RT, Kharouf N, et al. Mechanisms of melanoma progression and treatment resistance: role of cancer stem-like cells. Cancers 2024;16:470.

61. Yao J, Yao X, Tian T, et al. ABCB5-ZEB1 axis promotes invasion and metastasis in breast cancer cells. Oncol Res 2017;25:305-16.

62. Hlaváč V, Václavíková R, Brynychová V, et al. Role of genetic variation in ABC transporters in breast cancer prognosis and therapy response. Int J Mol Sci 2020;21:9556.

63. Yang M, Li W, Fan D, et al. Expression of ABCB5 gene in hematological malignances and its significance. Leuk Lymphoma 2012;53:1211-5.

64. Marzac C, Garrido E, Tang R, et al. ATP Binding Cassette transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica 2011;96:1293-301.

65. Farawela HM, Khorshied MM, Kassem NM, Kassem HA, Zawam HM. The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study. J Cancer Res Clin Oncol 2014;140:1323-30.

66. Leung IC, Chong CC, Cheung TT, et al. Genetic variation in ABCB5 associates with risk of hepatocellular carcinoma. J Cell Mol Med 2020;24:10705-13.

67. Chong CCN, Cheung ST, Cheung YS, et al. Novel biomarkers GEP/ABCB5 regulate response to adjuvant transarterial chemoembolization after curative hepatectomy for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2018;17:524-30.

68. Cheung ST, Cheung PF, Cheng CK, Wong NC, Fan ST. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 2011;140:344-55.

69. Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012;150:1121-34.

70. Wu Z, Zhao W, Yang Z, Wang YM, Dai Y, Chen LA. Novel resistance mechanisms to osimertinib analysed by whole-exome sequencing in non-small cell lung cancer. Cancer Manag Res 2021;13:2025-32.

71. Setia N, Abbas O, Sousa Y, Garb JL, Mahalingam M. Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma. Mod Pathol 2012;25:1169-75.

72. Vásquez-Moctezuma I, Meraz-Ríos MA, Villanueva-López CG, et al. ATP-binding cassette transporter ABCB5 gene is expressed with variability in malignant melanoma. Actas Dermosifiliogr 2010;101:341-8.

73. Gambichler T, Petig AL, Stockfleth E, Stücker M. Expression of SOX10, ABCB5 and CD271 in melanocytic lesions and correlation with survival data of patients with melanoma. Clin Exp Dermatol 2016;41:709-16.

74. Strobel SB, Machiraju D, Hülsmeyer I, et al. Expression of potential targets for cell-based therapies on melanoma cells. Life 2021;11:269.

75. Kleffel S, Lee N, Lezcano C, et al. ABCB5-targeted chemoresistance reversal inhibits merkel cell carcinoma growth. J Invest Dermatol 2016;136:838-46.

76. Grimm M, Cetindis M, Lehmann M, et al. Apoptosis resistance-related ABCB5 and DNaseX (Apo10) expression in oral carcinogenesis. Acta Odontol Scand 2015;73:336-42.

77. Li X, Hou YS. MiR-4282 contributes to inhibit pancreatic cancer metastasis by negatively interacting with ABCB5. Eur Rev Med Pharmacol Sci 2020;24:9915-23.

78. Karas Zella MA, Sebastião APM, Collaço LM, et al. Prognostic significance of CD133 and ABCB5 expression in papillary thyroid carcinoma. Eur J Histochem 2020;64:3143.

79. Heimerl S, Bosserhoff AK, Langmann T, Ecker J, Schmitz G. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res 2007;17:265-73.

80. Szakács G, Annereau JP, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004;6:129-37.

81. de Waard NE, Kolovou PE, McGuire SP, et al. Expression of multidrug resistance transporter ABCB5 in a murine model of human conjunctival melanoma. Ocul Oncol Pathol 2015;1:182-9.

82. Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020;8:e9394.

83. Gasser M, Kim M, Rehder R, et al. Clinical significance of disseminated pluripotent tumor cell signature expression in the bone marrow from patients with colorectal cancer. J Cancer Sci Ther 2017;9:669-74.

84. Guo Q, Grimmig T, Gonzalez G, et al. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem 2018;293:11166-78.

85. Shang F, Wang Y, Shi Z, Deng Z, Ma J. Development of a signature based on eight metastatic-related genes for prognosis of GC patients. Mol Biotechnol 2023;65:1796-808.

86. Reid AL, Millward M, Pearce R, et al. Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol 2013;168:85-92.

87. Rapanotti MC, Campione E, Suarez Viguria TM, et al. Stem-mesenchymal signature cell genes detected in heterogeneous circulating melanoma cells correlate with disease stage in melanoma patients. Front Mol Biosci 2020;7:92.

88. Jones RM, Melton PE, Pinese M, et al; International Sarcoma Kindred Study. Identification of novel sarcoma risk genes using a two-stage genome wide DNA sequencing strategy in cancer cluster families and population case and control cohorts. BMC Med Genet 2019;20:69.

89. Lin JY, Zhang M, Schatton T, et al. Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk. Biochem Biophys Res Commun 2013;436:536-42.

90. Bertolotto C, Lesueur F, Giuliano S, et al; French Familial Melanoma Study Group. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011;480:94-8.

91. Kugimiya N, Nishimoto A, Hosoyama T, et al. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J Cell Mol Med 2015;19:1569-81.

92. Sakil HAM, Stantic M, Wolfsberger J, Brage SE, Hansson J, Wilhelm MT. ΔNp73 regulates the expression of the multidrug-resistance genes ABCB1 and ABCB5 in breast cancer and melanoma cells - a short report. Cell Oncol 2017;40:631-8.

93. Yang G, Jiang O, Ling D, et al. MicroRNA-522 reverses drug resistance of doxorubicin-induced HT29 colon cancer cell by targeting ABCB5. Mol Med Rep 2015;12:3930-6.

94. Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020;131:110718.

95. Sana G, Madigan JP, Gartner JJ, et al. Exome sequencing of ABCB5 identifies recurrent melanoma mutations that result in increased proliferative and invasive capacities. J Invest Dermatol 2019;139:1985-92.e10.

96. Liu Z, Gao J, Gu R, et al. Comprehensive analysis of transcriptomics and genetic alterations identifies potential mechanisms underlying anthracycline therapy resistance in breast cancer. Biomolecules 2022;12:1834.

97. Huang Y, Anderle P, Bussey KJ, et al. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004;64:4294-301.

98. Yang JY, Ha SA, Yang YS, Kim JW. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer 2010;10:388.

99. Wozniak M, Szulawska-Mroczek A, Hartman M, Nejc D, Czyz M. Parthenolide complements the cell death-inducing activity of doxorubicin in melanoma cells. Anticancer Res 2013;33:3205-12.

100. Xiao J, Egger ME, McMasters KM, Hao H. Differential expression of ABCB5 in BRAF inhibitor-resistant melanoma cell lines. BMC Cancer 2018;18:675.

101. Lehne G, Grasmo-Wendler UH, Berner JM, et al. Upregulation of stem cell genes in multidrug resistant K562 leukemia cells. Leuk Res 2009;33:1379-85.

102. Lu X, Xiang Y, Yang G, Zhang L, Wang H, Zhong S. Transcriptomic characterization of zebrafish larvae in response to mercury exposure. Comp Biochem Physiol C Toxicol Pharmacol 2017;192:40-9.

103. El-Khattouti A, Sheehan NT, Monico J, et al. CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 2015;357:83-104.

104. Tangella LP, Arooj M, Deplazes E, Gray ES, Mancera RL. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Comput Struct Biotechnol J 2021;19:691-704.

105. Fukunaga-Kalabis M, Martinez G, Nguyen TK, et al. Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene 2010;29:6115-24.

106. Kasica N, Jakubowski P, Kaleczyc J. P-glycoprotein inhibitor tariquidar plays an important regulatory role in pigmentation in larval zebrafish. Cells 2021;10:690.

107. Kondo S, Hongama K, Hanaya K, et al. Upregulation of cellular glutathione levels in human ABCB5- and murine Abcb5-transfected cells. BMC Pharmacol Toxicol 2015;16:37.

108. Kondo S, Kato Y, Minagawa S, Sugimoto Y. STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism. Biochem Biophys Res Commun 2020;523:672-7.

109. Reschly EJ, Bainy AC, Mattos JJ, et al. Functional evolution of the vitamin D and pregnane X receptors. BMC Evol Biol 2007;7:222.

110. Chen L, Luo Y, Zhang C, et al. Trifloxystrobin induced developmental toxicity by disturbing the ABC transporters, carbohydrate and lipid metabolism in adult zebrafish. Chemosphere 2024;349:140747.

111. Lutz NW, Banerjee P, Wilson BJ, Ma J, Cozzone PJ, Frank MH. Expression of cell-surface marker ABCB5 causes characteristic modifications of glucose, amino acid and phospholipid metabolism in the G3361 melanoma-initiating cell line. PLoS One 2016;11:e0161803.

112. Wadén K, Karlöf E, Narayanan S, et al. Clinical risk scores for stroke correlate with molecular signatures of vulnerability in symptomatic carotid patients. iScience 2022;25:104219.

113. Ibanez L, Heitsch L, Carrera C, et al. Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain 2022;145:2394-406.

114. Yang D, Li Z, Gao G, et al. Combined analysis of surface protein profile and microRNA expression profile of exosomes derived from brain microvascular endothelial cells in early cerebral ischemia. ACS Omega 2021;6:22410-21.

115. Deng X, Sabino EC, Cunha-Neto E, et al; REDSII Chagas Study Group from the NHLBI Retrovirus Epidemiology Donor Study-II Component International. Genome wide association study (GWAS) of Chagas cardiomyopathy in Trypanosoma cruzi seropositive subjects. PLoS One 2013;8:e79629.

116. Glessner JT, Bradfield JP, Wang K, et al. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am J Hum Genet 2010;87:661-6.

117. McCaffrey TA, St Laurent G 3rd, Shtokalo D, et al. Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics 2020;13:160.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/