REFERENCES

1. Bao G, Fang H, Chen L, et al. Soft robotics: academic insights and perspectives through bibliometric analysis. Soft Robot 2018;5:229-41.

2. Jumet B, Bell MD, Sanchez V, Preston DJ. A data-driven review of soft robotics. Adv Intell Syst 2022;4:2100163.

3. Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. Nat Rev Mater 2022;7:235-49.

4. Bresnahan TF, Trajtenberg M. General purpose technologies ‘Engines of growth’? J Econom 1995;65:83-108.

5. Reuveny R, Thompson WR. Leading sectors, lead economies, and economic growth. Rev Int Political Econ 2001;8:689-719.

6. Wang Y, Low FZ, Low YY, et al. Using early health economic modeling to inform medical innovation development: a soft robotic sock in poststroke patients in Singapore. Int J Technol Assess Health Care 2023;39:e4.

7. Gariya N, Kumar P, Dobriyal R. A review on soft robotic technologies. AIP Conf Proc 2023;2521:050004.

8. Stuttaford-Fowler A, Samani H, Yang CY. Biomimicry in soft robotics actuation and locomotion. In: 2022 International Conference on System Science and Engineering (ICSSE); 2022 May 26-29; Taichung, Taiwan, China. IEEE; 2022. pp. 17-21.

9. Whitesides GM. Soft robotics. Angew Chem Int Ed Engl 2018;57:4258-73.

10. Hartmann F, Baumgartner M, Kaltenbrunner M. Becoming sustainable, the new frontier in soft robotics. Adv Mater 2021;33:e2004413.

11. Villeda Hernandez M. Chemo-driven soft pneumatic actuation: from catalysts to neutralisation reactions for oscillating pneumatic systems. Bristol, United Kingdom: University of Bristol; 2023. Available from: https://research-information.bris.ac.uk/en/studentTheses/chemo-driven-soft-pneumatic-actuation. [Last accessed on 27 March 2024].

12. Hu D, Zhang J, Yang Y, Li Q, Li D, Hong J. A novel soft robotic glove with positive-negative pneumatic actuator for hand rehabilitation. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM); 2020 Jul 6-9; Boston, MA, USA. IEEE; 2020. pp. 1840-7.

13. Katzschmann RK, Marchese AD, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh M, Khatib O, Kumar V, editors. Experimental robotics. Cham: Springer; 2016. pp. 405-20.

14. Galloway KC, Becker KP, Phillips B, et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot 2016;3:23-33.

15. Katzschmann RK, DelPreto J, MacCurdy R, Rus D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot 2018;3:eaar3449.

16. Sinatra NR, Teeple CB, Vogt DM, Parker KK, Gruber DF, Wood RJ. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci Robot 2019;4:eaax5425.

17. Wang X, Kang H, Zhou H, Au W, Wang MY, Chen C. Development and evaluation of a robust soft robotic gripper for apple harvesting. Comput Electron Agric 2023;204:107552.

18. Vaughan CP, Markland AD. Urinary incontinence in women. Ann Intern Med 2020;172:ITC17-32.

19. Emery AEH. The muscular dystrophies. Lancet 2002;359:687-95.

20. Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022;13:86-99.

21. Roche ET, Horvath MA, Wamala I, et al. Soft robotic sleeve supports heart function. Sci Transl Med 2017;9:eaaf3925.

22. Payne CJ, Wamala I, Bautista-Salinas D, et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci Robot 2017;2:eaan6736.

23. Simons MF, Digumarti KM, Le NH, et al. B:Ionic glove: a soft smart wearable sensory feedback device for upper limb robotic prostheses. IEEE Robot Autom Lett 2021;6:3311-6.

24. Payne CJ, Wamala I, Abah C, et al. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot 2017;4:241-50.

25. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Rob Auton Syst 2015;73:135-43.

26. Helps T, Taghavi M, Manns S, Turton AJ, Rossiter J. Easy undressing with soft robotics. In: Giuliani M, Assaf T, Giannaccini M, editors. Towards autonomous robotic systems. Cham: Springer; 2018. pp. 79-90.

27. Haynes AC, Lywood A, Crowe EM, Fielding JL, Rossiter JM, Kent C. A calming hug: design and validation of a tactile aid to ease anxiety. PLoS One 2022;17:e0259838.

28. Morris L, Cramp M, Turton A. User perspectives on the future of mobility assistive devices: Understanding users’ assistive device experiences and needs. J Rehabil Assist Technol Eng 2022;9:20556683221114790.

29. Li H, Yao J, Zhou P, Chen X, Xu Y, Zhao Y. High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens Actuators A Phys 2020;306:111957.

30. Pagoli A, Chapelle F, Corrales-ramon J, Mezouar Y, Lapusta Y. Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater Struct 2022;31:013001.

31. Villeda-Hernandez M, Baker BC, Romero C, Rossiter JM, Dicker MPM, Faul CFJ. Chemically driven oscillating soft pneumatic actuation. Soft Robot 2023;10:1159-70.

32. Wang J, Gao D, Lee PS. Recent progress in artificial muscles for interactive soft robotics. Adv Mater 2021;33:e2003088.

33. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater 2017;29:1603483.

34. Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R. Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 2006;209:3558-68.

35. Coyle S, Majidi C, Leduc P, Hsia KJ. Bio-inspired soft robotics: material selection, actuation, and design. Extrem Mech Lett 2018;22:51-9.

36. Peng Y, Serfass CM, Kawazoe A, et al. Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nat Mater 2021;20:1707-11.

37. Luo M, Skorina EH, Tao W, Chen F, Onal CD. Optimized design of a rigid kinematic module for antagonistic soft actuation. In: 2015 IEEE Conference on Technologies for Practical Robot Applications (TePRA); 2015 May 11-12; Woburn, MA, USA. IEEE; 2015. pp. 1-6.

38. Hu W, Mutlu R, Li W, Alici G. A structural optimisation method for a soft pneumatic actuator. Robotics 2018;7:24.

39. Jiao Z, Ji C, Zou J, Yang H, Pan M. Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Adv Mater Technol 2019;4:1800429.

40. Das B, Wang Y. Isometric pull-push strengths in workspace: 1. strength profiles. Int J Occup Saf Ergon 2004;10:43-58.

41. Fahal IH, Bell GM, Bone JM, Edwards RH. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial Transplant 1997;12:119-27.

42. Nilsen T, Hermann M, Eriksen CS, Dagfinrud H, Mowinckel P, Kjeken I. Grip force and pinch grip in an adult population: reference values and factors associated with grip force. Scand J Occup Ther 2012;19:288-96.

43. Ling L, Malmfred S, Thesleff P. Solid-sphere test for examination of anal sphincter strength. Scand J Gastroenterol 1984;19:960-4.

44. Xu HQ, Xue YT, Zhou ZJ, et al. Review of: Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test. Sci Rep 2021;11:22677.

45. Yap HK, Ng HY, Yeow C. High-force soft printable pneumatics for soft robotic applications. Soft Robot 2016;3:144-58.

46. Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of nations: an estimation of adult human biomass. BMC Public Health 2012;12:439.

47. Suulker C, Skach S, Althoefer K. A fabric soft robotic exoskeleton with novel elastic band integrated actuators for hand rehabilitation. arXiv. [Preprint.] Dec 14, 2022 [accessed 2024 Mar 27]. Available from: https://arxiv.org/abs/2212.07206.

48. Baeten J, Donné K, Boedrij S, Beckers W, Claesen E. Autonomous fruit picking machine: a robotic apple harvester. In: Laugier C, Siegwart R, editors. Field and service robotics. Heidelberg, Berlin: Springer; 2008. pp. 531-9.

49. Liu Z, Lu Z, Karydis K. SoRX: a soft pneumatic hexapedal robot to traverse rough, steep, and unstable terrain. In: 2020 IEEE International Conference on Robotics and Automation (ICRA);2020 May 31 - Aug 31; Paris, France. IEEE; 2020. pp. 420-6.

50. Hashem R, Stommel M, Cheng LK, Xu W. Design and characterization of a bellows-driven soft pneumatic actuator. IEEE/ASME Trans Mechatron 2021;26:2327-38.

51. Chen G, Lin T, Ding S, Chen S, Ji A, Lodewijks G. Design and test of an active pneumatic soft wrist for soft grippers. Actuators 2022;11:311.

52. Son H, Park Y, Na Y, Yoon C. 4D multiscale origami soft robots: a review. Polymers 2022;14:4235.

53. Ai C, Chen Y, Xu L, et al. Current development on origami/kirigami-inspired structure of creased patterns toward robotics. Adv Eng Mater 2021;23:2100473.

54. Jin L, Forte AE, Deng B, Rafsanjani A, Bertoldi K. Kirigami-inspired inflatables with programmable shapes. Adv Mater 2020;32:e2001863.

55. Melancon D, Gorissen B, García-Mora CJ, Hoberman C, Bertoldi K. Multistable inflatable origami structures at the metre scale. Nature 2021;592:545-50.

56. Melancon D, Forte AE, Kamp LM, Gorissen B, Bertoldi K. Inflatable origami: multimodal deformation via multistability. Adv Funct Mater 2022;32:2201891.

57. Polygerinos P, Lyne S, Wang Z, et al. Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. IEEE; 2013. pp. 1512-7.

58. De Benedictis C, Franco W, Maffiodo D, Ferraresi C. Hand rehabilitation device actuated by a pneumatic muscle. In: Aspragathos N, Koustoumpardis P, Moulianitis V, editors. Advances in service and industrial robotics. Cham: Springer; 2019. pp. 102-11.

59. Raparelli T, Zobel PB, Durante F, Antonelli M, Raimondi P, Costanzo G. First clinical investigation on a pneumatic lumbar unloading orthosis. In: 2007 IEEE/ICME International Conference on Complex Medical Engineering; 2007 May 23-27; Beijing, China. IEEE; 2007. pp. 1327-30.

60. Ahmadjou A, Sadeghi S, Zareinejad M, Talebi HA. A compact valveless pressure control source for soft rehabilitation glove. Int J Med Robot 2021;17:e2298.

61. Kim SJ, Chang H, Park J, Kim J. Design of a portable pneumatic power source with high output pressure for wearable robotic applications. IEEE Robot Autom Lett 2018;3:4351-8.

62. Chun HTD, Roberts JO, Sayed ME, Aracri S, Stokes AA. Towards more energy efficient pneumatic soft actuators using a port-hamiltonian approach. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft); 2019 Apr 14-18; Seoul, Korea (South). IEEE; 2019. pp. 277-82.

63. Gonzalez D, Garcia J, Voyles RM, Nawrocki RA, Newell B. Characterization of 3D printed pneumatic soft actuator. Sens Actuators A Phys 2022;334:113337.

64. Robertson MA, Sadeghi H, Florez JM, Paik J. Soft pneumatic actuator fascicles for high force and reliability. Soft Robot 2017;4:23-32.

65. Wilkening A, Mihajlov M, Ivlev O. Model-based pressure and torque control for innovative pneumatic soft-actuators. In: 7th International Fluid Power Conference. 2010. pp. 1-12. Available from: https://www.researchgate.net/profile/Oleg-Ivlev/publication/267859903_Model-Based_Pressure_and_Torque_Control_for_Innovative_Pneumatic_Soft-Actuators/links/54ae4c6e0cf24aca1c6f90c7/Model-Based-Pressure-and-Torque-Control-for-Innovative-Pneumatic-Soft-Actuators.pdf. [Last accessed on 27 March 2024]

66. Breitman P, Matia Y, Gat AD. Fluid mechanics of pneumatic soft robots. Soft Robot 2021;8:519-30.

67. Wehner M, Tolley MT, Mengüç Y, et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot 2014;1:263-74.

68. Niiyama R, Rus D, Kim S. Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31 - Jun 7; Hong Kong, China. IEEE; 2014. pp. 6332-7.

69. Diteesawat RS, Helps T, Taghavi M, Rossiter J. Electro-pneumatic pumps for soft robotics. Sci Robot 2021;6:eabc3721.

70. Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016;536:451-5.

71. Kim KR, Shin YJ, Kim KS, Kim S. Application of chemical reaction based pneumatic power generator to robot finger. In. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. IEEE; 2013. pp. 4906-11.

72. Boyle R. A defence of the doctrine touching the spring and weight of the air propos’d by Mr. R. Boyle in his new physico-mechanical experiments, against the objections of Franciscus Linus; wherewith the objector’s funicular hypothesis is also examin’d, by the author of those experiments. Available from: https://quod.lib.umich.edu/e/eebo/A28956.0001.001?view=toc. [Last accessed on 27 March 2024]

73. Gay-Lussac LJ. The expansion of gases by heat. Available from: https://web.lemoyne.edu/~giunta/gaygas.html. [Last accessed on 29 March 2024]

74. Avogadro A. Essay on a manner of determining the relative masses of the elementary molecules of bodies, and the proportions in which they enter into these compounds. 1811. Available from: https://web.lemoyne.edu/~giunta/avogadro.html. [Last accessed on 29 March 2024]

75. Lee J, Yoon Y, Park H, et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv Intell Syst 2022;4:2100271.

76. Silbey RJ, Alberty RA, Papadantonakis GA, Bawendi MG. Physical chemistry. John Wiley & Sons; 2022. Available from: https://books.google.com/books/about/Physical_Chemistry.html?id=SMd3NAEACAAJ. [Last accessed on 27 March 2024].

77. Atkins P, Overton T, Rourke J, Weller M, Armstrong F. Shriver and Atkins’ inorganic chemistry. 5th ed. Oxford University Press; 2009. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=tUmcAQAAQBAJ&oi=fnd&pg=PP2&dq=Atkins+P,+Overton+T,+Rourke+J,+Weller+M,+Armstrong+F.+Shriver+and+Atkins%E2%80%99+inorganic+chemistry&ots=i47SGsARce&sig=-iOikgfZRVmAH2D04fTFWonHSFg. [Last accessed on 27 March 2024].

78. Adami M, Seibel A. On-board pneumatic pressure generation methods for soft robotics applications. Actuators 2019;8:2.

79. Tolley MT, Shepherd RF, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robot 2014;1:213-23.

80. Prince JC, Treviño C, Williams FA. A reduced reaction mechanism for the combustion of n-butane. Combust Flame 2017;175:27-33.

81. Warnatz J. The mechanism of high temperature combustion of propane and butane. Combust Sci Technol 1983;34:177-200.

82. Onal CD, Chen X, Whitesides GM, Rus D. Soft mobile robots with on-board chemical pressure generation. In: Christensen H, Khatib O, editors. Robotics research. Cham: Springer; 2017. pp. 525-40.

83. Goldfarb M, Barth E, Gogola M, Wehrmeyer J. Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots. IEEE/ASME Trans Mechatron 2003;8:254-62.

84. Okui M, Nagura Y, Iikawa S, Yamada Y, Nakamura T. A pneumatic power source using a sodium bicarbonate and citric acid reaction with pressure booster for use in mobile devices. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. IEEE; 2017, pp. 1040-5.

85. Kitamori T, Wada A, Nabae H, Suzumori K. Untethered three-arm pneumatic robot using hose-free pneumatic actuator. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Korea (South). IEEE; 2016, pp. 543-8.

86. Hosono M, Ino S, Sato M, Yamashita K, Izumi T. A system utilizing metal hydride actuators to achieve passive motion of toe joints for prevention of pressure ulcers: a pilot study. Rehabil Res Pract 2012;2012:541383.

87. Nishikawa Y, Matsumoto M. A design of fully soft robot actuated by gas-liquid phase change. Adv Robot 2019;33:567-75.

88. Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed Engl 2013;52:2892-6.

89. Heisser RH, Aubin CA, Peretz O, et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc Natl Acad Sci U S A 2021;118:e2106553118.

90. Timm S, Mielewczik M, Florian A, et al. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 2012;7:e42809.

91. Gilbert PUPA, Bergmann KD, Boekelheide N, et al. Biomineralization: integrating mechanism and evolutionary history. Sci Adv 2022;8:eabl9653.

92. Ciria-Recasens M, Blanch-Rubió J, Coll-Batet M, et al. Comparison of the effects of ossein-hydroxyapatite complex and calcium carbonate on bone metabolism in women with senile osteoporosis: a randomized, open-label, parallel-group, controlled, prospective study. Clin Drug Investig 2011;31:817-24.

94. Mumallah NA. Factors influencing the reaction rate of hydrochloric acid and carbonate rock. In: the SPE International Symposium on Oilfield Chemistry, Anaheim, California, February 1991. Available from: https://onepetro.org/SPEOCC/proceedings-abstract/91OCS/All-91OCS/SPE-21036-MS/53568. [Last accessed on 27 March 2024]

95. Bischoff KB. Effectiveness factors for general reaction rate forms. Aiche J 1965;11:351-5.

96. Doménech P, Pogrebnyakov I, Nielsen AT, Riisager A. Catalytic production of long-chain hydrocarbons suitable for jet-fuel use from fermentation-derived oxygenates. Green Chem 2022;24:3461-74.

97. Wang S, Zhang T, Bao M, Su H, Xu P. Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol J 2020;15:e1900297.

98. Soccol CR, Pandey A, Larroche C. Fermentation processes engineering in the food industry. 1st ed. CRC Press; 2013, pp. 1-464.

99. Dagle VL, Smith C, Flake M, et al. Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels. Green Chem 2016;18:1880-91.

100. Chakik FE, Kaddami M, Mikou M. Effect of operating parameters on hydrogen production by electrolysis of water. Int J Hydrogen Energy 2017;42:25550-7.

101. Symons MCR. 809. The mechanism of decomposition of potassium permanganate in alkaline solution and its bearing on oxidation by this reagent. J Chem Soc 1953:3956-61.

102. Janudin N, Kasim NAM, Knight VF, et al. Sensing techniques on determination of chlorine gas and free chlorine in water. J Sensors 2022;2022:1898417.

103. Atkins P. Reactions: the private life of atoms. Oxford Academic; 2011. pp. 191.

104. Giaretta JE, Duan H, Oveissi F, Farajikhah S, Dehghani F, Naficy S. Flexible sensors for hydrogen peroxide detection: a critical review. ACS Appl Mater Interfaces 2022;14:20491-505.

105. Hu L, Tao K, Miao J, Grüber G. Hydrogen-peroxide-fuelled platinum-nickel-SU-8 microrocket with steerable propulsion using an eccentric nanoengine. RSC Adv 2016;6:102513-8.

106. Kopacz W, Okninski A, Kasztankiewicz A, Nowakowski P, Rarata G, Maksimowski P. Hydrogen peroxide - a promising oxidizer for rocket propulsion and its application in solid rocket propellants. FirePhysChem 2022;2:56-66.

107. Castillo E, Vilke G. Road traffic accidents: air bag-related injuries and deaths. encyclopedia of forensic and legal medicine. Elsevier; 2016. pp. 162-74.

108. Oxtoby DW, Gillis HP, Butler LJ. Principles of modern chemistry. 8th ed. Cengage Learning; 2016. pp. 993. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=IQGEDwAAQBAJ&oi=fnd&pg=PP1&dq=Oxtoby+DW,+Gillis+HP,+Butler+LJ.+Principles+of+Modern+Chemistry&ots=16S2ZBOdDy&sig=oapaY9RHEUzsBEcv5MhBKiaAVDA#v=onepage&q&f=false. [Last accessed on 27 March 2024].

109. Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun 2017;8:596.

110. Mehmandoust B, Sanjari E, Vatani M. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties. J Adv Res 2014;5:261-9.

111. Cheng P, Ye Y, Jia J, Wu C, Xie Q. Design of cylindrical soft vacuum actuator for soft robots. Smart Mater Struct 2021;30:045020.

112. Miyazaki H, Uozaki H, Tojo A, et al. Application of low-vacuum scanning electron microscopy for renal biopsy specimens. Pathol Res Pract 2012;208:503-9.

113. Tawk C, In Het Panhuis M, Spinks GM, Alici G. Bioinspired 3D printable soft vacuum actuators for locomotion robots, grippers and artificial muscles. Soft Robot 2018;5:685-94.

114. Yang D, Verma MS, Lossner E, Stothers D, Whitesides GM. Negative-pressure soft linear actuator with a mechanical advantage. Adv Mater Technol 2017;2:1600164.

115. Fatahillah M, Oh N, Rodrigue H. A novel soft bending actuator using combined positive and negative pressures. Front Bioeng Biotechnol 2020;8:472.

116. Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell Syst 2021;3:2000223.

117. Pitzer KS. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 1973;77:268-77.

118. Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Morales-de-Anda DE, Caselle JE, Carricart-Ganivet JP. Coral calcification and carbonate production in the eastern tropical Pacific: the role of branching and massive corals in the reef maintenance. Geobiology 2022;20:533-45.

119. Carlot J, Kayal M, Lenihan HS, et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob Chang Biol 2021;27:2623-32.

120. Wu S, Baker GL, Yin J, Zhu Y. Fast thermal actuators for soft robotics. Soft Robot 2022;9:1031-9.

121. Benard J. The oxidation of metals and alloys. Metall Rev 1964;9:473-503.

122. Kofstad P. Oxidation of metals: determination of activation energies. Nature 1957;179:1362-3.

123. Khanna AS. Chapter 6 - High temperature oxidation. Handbook of environmental degradation of materials. Elsevier; 2005. pp. 105-52.

124. Young DJ. High temperature oxidation and corrosion of metals. 1st ed. Elsevier; 2008, pp. 593. Available from: https://shop.elsevier.com/books/high-temperature-oxidation-and-corrosion-of-metals/young/978-0-08-044587-8. [Last accessed on 27 March 2024].

125. Shemet V, Pomytkin A, Neshpor V. High-temperature oxidation behaviour of carbon materials in air. Carbon 1993;31:1-6.

126. Nagai T, Kurita A, Shintake J. Characterization of sustainable robotic materials and finite element analysis of soft actuators under biodegradation. Front Robot AI 2021;8:760485.

127. Laschi C, Mazzolai B. Bioinspired materials and approaches for soft robotics. MRS Bulletin 2021;46:345-9.

128. Leigh GJ. Haber-bosch and other industrial processes. In: Smith BE, Richards RL, Newton WE, editors. Catalysts for nitrogen fixation. Dordrecht,Netherlands: Springer; 2004. pp. 33-54.

129. Bullock RM. Catalysis without precious metals. Wiley; 2010.

131. Ottaway MR, Coates CF, Haines PJ, Skinner GA. The use of thermal methods in assessing the hazards and safety of chemical reactions. Anal Proc 1986;23:116.

132. Etchells JC; Principal Specialist Inspector. The protection of reactors containing exothermic reactions: an HSE view. 1994. pp. 377-84. Available from: https://www.icheme.org/media/10390/xii-paper-25.pdf. [Last accessed on 27 March 2024].

133. Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 2021;50:8355-60.

134. Taylor CJ, Pomberger A, Felton KC, et al. A brief introduction to chemical reaction optimization. Chem Rev 2023;123:3089-126.

135. Stoessel F. Thermal safety of chemical processes: risk assessment and process design. Wiley; 2008. pp. 1-374.

136. Brent J, Burkhart K, Dargan P, et al. Critical care toxicology: diagnosis and management of the critically poisoned patient. Springer; 2017. pp. 1-3058.

137. Shepherd RF, Ilievski F, Choi W, et al. Multigait soft robot. Proc Natl Acad Sci U S A 2011;108:20400-3.

138. Joshi S, Paik J. Pneumatic supply system parameter optimization for soft actuators. Soft Robot 2021;8:152-63.

139. Soft robotics toolkit. Modeling and design tool for soft pneumatic actuators. Available from: https://softroboticstoolkit.com/book/modeling-soft-pneumatic-actuators. [Last accessed on 27 March 2024].

140. Mourad AA, Mohammad AF, Al-marzouqi AH, El-naas MH, Al-marzouqi MH, Altarawneh M. CO2 capture and ions removal through reaction with potassium hydroxide in desalination reject brine: Statistical optimization. Chem Eng Process Process Intensif 2022;170:108722.

141. Ho H, Iizuka A. Mineral carbonation using seawater for CO2 sequestration and utilization: a review. Sep Purif Technol 2023;307:122855.

142. Kucka L, Kenig EY, Górak A. Kinetics of the gas - liquid reaction between carbon dioxide and hydroxide ions. Ind Eng Chem Res 2002;41:5952-7.

143. Rajappan A, Jumet B, Preston DJ. Pneumatic soft robots take a step toward autonomy. Sci Robot 2021;6:eabg6994.

144. Drotman D, Jadhav S, Sharp D, Chan C, Tolley MT. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci Robot 2021;6:eaay2627.

145. Mosadegh B, Kuo CH, Tung YC, et al. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat Phys 2010;6:433-7.

146. Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater 2014;24:2163-70.

147. Su M, Xie R, Zhang Y, et al. Pneumatic soft actuator with anisotropic soft and rigid restraints for pure in-plane bending motion. Appl Sci 2019;9:2999.

148. Gorissen B, Melancon D, Vasios N, Torbati M, Bertoldi K. Inflatable soft jumper inspired by shell snapping. Sci Robot 2020;5:eabb1967.

149. Rothemund P, Ainla A, Belding L, et al. A soft, bistable valve for autonomous control of soft actuators. Sci Robot 2018;3:eaar7986.

150. Philamore H, Rossiter J, Stinchcombe A, Ieropoulos I. Row-bot: an energetically autonomous artificial water boatman. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2015 Sep 28 - Oct 2; Hamburg, Germany. IEEE; 2015. pp. 3888-93.

151. Girabawe C, Fraden S. An image-driven drop-on-demand system. Sens Actuators B Chem 2017;238:532-9.

152. Sitti M, Ceylan H, Hu W, et al. Biomedical applications of untethered mobile milli/microrobots. Proc IEEE Inst Electr Electron Eng 2015;103:205-24.

153. Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013;31:287-94.

154. Zhang C, Zhu P, Lin Y, Jiao Z, Zou J. Modular soft robotics: modular units, connection mechanisms, and applications. Adv Intell Syst 2020;2:1900166.

155. Arnaboldi S, Salinas G, Bichon S, Gounel S, Mano N, Kuhn A. Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers. Nat Commun 2023;14:6390.

156. Yang X, Chang L, Pérez-Arancibia NO. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci Robot 2020;5:eaba0015.

157. Chen S, Cao Y, Sarparast M, et al. Soft crawling robots: design, actuation, and locomotion. Adv Mater Technol 2020;5:1900837.

158. Sarikaya S, Gardea F, Auletta JT, et al. Fuel-driven redox reactions in electrolyte-free polymer actuators for soft robotics. ACS Appl Mater Interfaces 2023;15:31803-11.

159. Mangadlao JD, Xu H, Baer E, Advincula RC. In situ photogeneration of palladium nanoparticles in thermoplastic polyurethane: photopatterning and enhanced oxygen barrier property. Macro Chem Phys 2017;218:1700289.

160. Storck S, Bretinger H, Maier WF. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A Gen 1998;174:137-46.

161. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444.

162. Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ. The development of chiral nematic mesoporous materials. Acc Chem Res 2014;47:1088-96.

163. Wang H, Yuan X, Wu Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B Environ 2015;174-5:445-54.

164. Narzary BB, Baker BC, Yadav N, D’elia V, Faul CFJ. Crosslinked porous polyimides: structure, properties and applications. Polym Chem 2021;12:6494-514.

165. Narzary BB, Baker BC, Faul CFJ. Selective CO2 electroreduction from tuneable naphthalene-based porous polyimide networks. Adv Mater 2023;35:e2211795.

166. Giri N, Del Pópolo MG, Melaugh G, et al. Liquids with permanent porosity. Nature 2015;527:216-20.

167. Fulvio PF, Dai S. Porous liquids: the next frontier. Chem 2020;6:3263-87.

168. Gronnow MJ, White RJ, Clark JH, Macquarrie DJ. Energy efficiency in chemical reactions:  a comparative study of different reaction techniques. Org Process Res Dev 2005;9:516-8.

169. Xavier MS, Tawk CD, Zolfagharian A, et al. Soft pneumatic actuators: a review of design, fabrication, modeling, sensing, control and applications. IEEE Access 2022;10:59442-85.

170. Dezaki M, Bodaghi M, Serjouei A, Afazov S, Zolfagharian A. Soft pneumatic actuators with controllable stiffness by bio-inspired lattice chambers and fused deposition modeling 3D printing. Adv Eng Mater 2023;25:2200797.

171. Yadav T, Mishra G. Insect toxins and their bioprospecting. In: Omkar, editor. Insects as service providers. Singapore: Springer; 2023. pp. 131-62.

172. Arndt EM, Moore W, Lee WK, Ortiz C. Biomechanics. Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science 2015;348:563-7.

173. Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. Self-healing soft pneumatic robots. Sci Robot 2017;2:eaan4268.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/