REFERENCES

1. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

3. Peng H, Huang J, Cheng X, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 2017;7:1700260.

4. Huang S, Huixiang E, Yang Y, Zhang Y, Ye M, Li CC. Transition metal phosphides: new generation cathode host/separator modifier for Li-S batteries. J Mater Chem A 2021;9:7458-80.

5. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.

6. Li H, Zhao M, Jin B, Wen Z, Liu HK, Jiang Q. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small 2020;16:e1907464.

7. Dong C, Zhou H, Liu H, et al. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J Mater Sci Technol 2022;113:207-16.

8. Wang Y, Meng Y, Zhang Z, Guo Y, Xiao D. Trifunctional electrolyte additive hexadecyltrioctylammonium iodide for lithium-sulfur batteries with extended cycle life. ACS Appl Mater Interfaces 2021;13:16545-57.

9. Wu DS, Shi F, Zhou G, et al. Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Mater 2018;13:241-6.

10. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev 2016;45:5605-34.

11. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 2013;52:13186-200.

12. Wang D, Zeng Q, Zhou G, et al. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 2013;1:9382-94.

13. Chung SH, Manthiram A. Current status and future prospects of metal-sulfur batteries. Adv Mater 2019;31:e1901125.

14. Zheng J, Lv D, Gu M, et al. How to obtain reproducible results for lithium sulfur batteries? J Electrochem Soc 2013;160:A2288-92.

15. Xu J, Xu L, Zhang Z, et al. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries. Energy Storage Mater 2022;47:223-34.

16. Sheng Q, Liu H, Liu Y, et al. Functional separator with 1T/2H-MoSe2 nanosheets decorated nitrogen and sulfur co-doped mesoporous hollow carbon spheres for high-performance Li-S batteries. Chem Eng J 2023;476:146880.

17. Yao W, Xu J, Ma L, et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv Mater 2023;35:e2212116.

18. Li H, Zhou Y, Zhao M, et al. Suppressed shuttle via inhibiting the formation of long-chain lithium polysulfides and functional separator for greatly improved lithium-organosulfur batteries performance. Adv Energy Mater 2020;10:1902695.

19. Wu H, Gao X, Chen X, et al. Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries. Carbon Energy 2024;6:e422.

20. Han SA, Qutaish H, Lee J, Park M, Kim JH. Metal-organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2023;5:e12283.

21. Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium-sulfur batteries. J Mater Chem A 2019;7:22730-43.

22. Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020;14:204-17.

23. Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater 2021;33:e2103148.

24. VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:eabf1581.

25. An Y, Tian Y, Shen H, Man Q, Xiong S, Feng J. Two-dimensional MXenes for flexible energy storage devices. Energy Environ Sci 2023;16:4191-250.

26. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.

27. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.

28. Lai S, Jeon J, Jang SK, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale 2015;7:19390-6.

29. Hu T, Wang J, Zhang H, Li Z, Hu M, Wang X. Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys Chem Chem Phys 2015;17:9997-10003.

30. Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 2013;23:2185-92.

31. Jayan R, Vashisth A, Islam MM. First-principles investigation of elastic and electronic properties of double transition metal carbide MXenes. J Am Ceram Soc 2022;105:4400-13.

32. Azadi SK, Zeynali M, Asgharizadeh S, Fooladloo MA. Investigation of the optical and electronic properties of functionalized Ti3C2 Mxene with halid atoms using DFT calculation. Mater Today Commun 2023;35:106136.

33. Zhang Y, Zha X, Luo K, et al. Theoretical study on the electrical and mechanical properties of MXene multilayer structures through strain regulation. Chem Phys Lett 2020;760:137997.

34. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2016;2:1600255.

35. Zeraati A, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021;13:3572-80.

36. Zhang J, Kong N, Uzun S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater 2020;32:e2001093.

37. Xue N, Li X, Han L, et al. Fluorine-free synthesis of ambient-stable delaminated Ti2CTx (MXene). J Mater Chem A 2022;10:7960-7.

38. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A 2014;2:14334-8.

39. Zhang CJ, Pinilla S, Mcevoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater 2017;29:4848-56.

40. Chae Y, Kim SJ, Cho SY, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 2019;11:8387-93.

41. Echols IJ, Holta DE, Kotasthane VS, et al. Oxidative stability of Nbn+1CnTz MXenes. J Phys Chem C 2021;125:13990-6.

42. Lee Y, Kim SJ, Kim Y, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A 2020;8:573-81.

43. Lee DK, Chae Y, Yun H, Ahn CW, Lee JW. CO2-Oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 2020;14:9744-54.

44. Borysiuk VN, Mochalin VN, Gogotsi Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology 2015;26:265705.

45. Guo Z, Zhou J, Si C, Sun Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys Chem Chem Phys 2015;17:15348-54.

46. Chen Y, Tang S, Yan X. Manipulating the crack path through the surface functional groups of MXenes. Nanoscale 2022;14:14169-77.

47. Pan Y, Fu L, Zhou Q, et al. Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). Polym Compos 2020;41:210-8.

48. Wan S, Li X, Chen Y, et al. High-strength scalable MXene films through bridging-induced densification. Science 2021;374:96-9.

49. Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 2017;29:7633-44.

50. Srivastava P, Mishra A, Mizuseki H, Lee KR, Singh AK. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 2016;8:24256-64.

51. Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4:1716.

52. Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater 2017;29:1632-40.

53. Jiang G, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J 2019;373:1309-18.

54. Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B 2015;191:33-40.

55. Wang K, Zhou Y, Xu W, Huang D, Wang Z, Hong M. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram Int 2016;42:8419-24.

56. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516:78-81.

57. Ebrahimi M, Mei C. Optoelectronic properties of Ti3C2Tx MXene transparent conductive electrodes: microwave synthesis of parent MAX phase. Ceram Int 2020;46:28114-9.

58. Li X, Li Q, Hou Y, et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 2021;15:14631-42.

59. Wu M, Wang B, Hu Q, Wang L, Zhou A. The synthesis process and thermal stability of V2C MXene. Materials 2018;11:2112.

60. Wang X, Garnero C, Rochard G, et al. A new etching environment (FeF3 /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A 2017;5:22012-23.

61. Wang B, Zhou A, Liu F, Cao J, Wang L, Hu Q. Carbon dioxide adsorption of two-dimensional carbide MXenes. J Adv Ceram 2018;7:237-45.

62. Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016;8:11385-91.

63. Khan U, Luo Y, Kong LB, Que W. Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. J Alloys Compd 2022;926:166903.

64. Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020;369:979-83.

65. Xuan J, Wang Z, Chen Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed 2016;128:14789-94.

66. Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew Chem Int Ed 2018;130:6223-7.

67. Chen J, Chen M, Zhou W, et al. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors. ACS Nano 2022;16:2461-70.

68. Pang SY, Wong YT, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 2019;141:9610-6.

69. Wang D, Zhou C, Filatov AS, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023;379:1242-7.

70. Shi H, Zhang P, Liu Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed 2021;133:8771-5.

71. Ding J, Zhao H, Wang Q, Dou H, Chen H, Yu H. An ultrahigh thermal conductive graphene flexible paper. Nanoscale 2017;9:16871-8.

72. Zhu C, Hui Z, Pan H, et al. Ultrafast Li-ion migration in holey-graphene-based composites constructed by a generalized ex situ method towards high capacity energy storage. J Mater Chem A 2019;7:4788-96.

73. Xu H, Kong Z, Siegenthaler J, et al. Review on recent advances in two-dimensional nanomaterials-based cathodes for lithium-sulfur batteries. EcoMat 2023;5:e12286.

74. Chen X, Li L, Shan Y, Zhou D, Cui W, Zhao Y. Notes in accordions - organized MXene equipped with CeO2 for synergistically adsorbing and catalyzing polysulfides for high-performance lithium-sulfur batteries. J Energy Chem 2022;70:502-10.

75. Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed 2015;127:3979-83.

76. Zhao Y, Li Q, Liu Z, et al. Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons. ACS Appl Mater Interfaces 2020;12:37967-76.

77. Tang H, Li W, Pan L, et al. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv Funct Mater 2019;29:1901907.

78. Yang C, Yu Z, Jian C, Li T, Tian L, Liu H. Molten salt etched Ti3C2Tx MXene for ameliorated electrochemical performances of lithium-sulfur batteries. J Mater Sci Mater Electron 2023;34:718.

79. Liang L, Niu L, Wu T, Zhou D, Xiao Z. Fluorine-free fabrication of MXene via photo-fenton approach for advanced lithium-sulfur batteries. ACS Nano 2022;16:7971-81.

80. Wang Z, Bai J, Xu H, Chen G, Kang S, Li X. Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage. J Colloid Interface Sci 2020;577:329-36.

81. Bao W, Xie X, Xu J, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chemistry 2017;23:12613-9.

82. Zhang CF, Cui LF, Abdolhosseinzadeh S, Heier J. Two-dimensional MXenes for lithium-sulfur batteries. Infomat 2020;2:613-38.

83. Yang BT, Xu MY, Gao Y, Zhu QZ, Xu B. Interfacial engineering and coupling of MXene/reduced graphene oxide/C3N4 aerogel with optimized d-band center as a free-standing sulfur carrier for high-performance Li-S batteries. Small Methods 2024;8:2301102.

84. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater 2017;29:1603040.

85. Lv LP, Guo CF, Sun W, Wang Y. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 2019;15:e1804338.

86. Tang X, Gan R, Tan L, Tong C, Li C, Wei Z. 3D net-like GO-d-Ti3C2Tx MXene aerogels with catalysis/adsorption dual effects for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 2021;13:55235-42.

87. Zhang S, Zhong N, Zhou X, et al. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nanomicro Lett 2020;12:112.

88. Wang JL, Zhang Z, Yan XF, et al. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett 2020;12:4.

89. Song Y, Sun Z, Fan Z, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020;70:104555.

90. Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater 2018;8:1702485.

91. Luo Y, Ye Z, Mo L, Li B, Li S. A freestanding nitrogen-doped MXene/graphene cathode for high-performance Li-S batteries. Nanoscale Adv 2022;4:2189-95.

92. Zhang D, Wang S, Hu R, et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv Funct Mater 2020;30:2002471.

93. Qin J, Wang R, Xiao P, Wang D. Engineering cooperative catalysis in Li-S batteries. Adv Energy Mater 2023;13:2300611.

94. Tan Z, Liu S, Zhang X, et al. Few-layered V2C MXene derived 3D V3S4 nanocrystal functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries. J Mater Chem A 2022;10:18679-89.

95. Tian S, Huang J, Yang H, et al. Self-supporting multicomponent hierarchical network aerogel as sulfur anchoring-catalytic medium for highly stable lithium-sulfur battery. Small 2022;18:e2205163.

96. Song C, Zhang W, Jin Q, Zhang Y, Wang X, Bakenov Z. In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. J Power Sources 2022;520:230902.

97. Zhang H, Yang L, Zhang P, et al. MXene-derived TinO2n-1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfde mediation via defect engineering. Adv Mater 2021;33:e2008447.

98. Zhang M, Lu Y, Yue Z, et al. Design and synthesis of novel pomegranate-like TiN@MXene microspheres as efficient sulfur hosts for advanced lithium sulfur batteries. RSC Adv 2023;13:9322-32.

99. Wang H, Cui Z, He SA, et al. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett 2022;14:189.

100. Li T, Liang L, Chen Z, Zhu J, Shen P. Hollow Ti3C2T MXene@CoSe2/N-doped carbon heterostructured composites for multiphase electrocatalysis process in lithium-sulfur batteries. Chem Eng J 2023;474:145970.

101. Li J, Niu Z, Guo C, Li M, Bao W. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. J Energy Chem 2021;54:434-51.

102. Wang L, Meng X, Wang X, Zhen M. Dual-conductive CoSe2@TiSe2-C heterostructures promoting overall sulfur redox kinetics under high sulfur loading and lean electrolyte. Small 2023;19:e2300089.

103. Guo D, Ming F, Su H, et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019;61:478-85.

104. Han X, Chen J, Chen M, et al. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Mater 2021;39:250-8.

105. Yu X, Yang Y, Si L, Cai J, Lu X, Sun Z. V4C3TX MXene: first-principles computational and separator modification study on immobilization and catalytic conversion of polysulfide in Li-S batteries. J Colloid Interface Sci 2022;627:992-1002.

106. Li N, Xie Y, Peng S, Xiong X, Han K. Ultra-lightweight Ti3C2T MXene modified separator for Li-S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J Energy Chem 2020;42:116-25.

107. Xiong D, Huang S, Fang D, et al. Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries. Small 2021;17:e2007442.

108. Liu P, Qu L, Tian X, et al. Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl Energy Mater 2020;3:2708-18.

109. Li Y, Li M, Zhu Y, et al. Polysulfide-inhibiting, thermotolerant and nonflammable separators enabled by DNA co-assembled CNT/MXene networks for stable high-safety Li-S batteries. Compos Part B Eng 2023;251:110465.

110. Zheng M, Luo Z, Song Y, et al. Carbon-coated nitrogen, vanadium co-doped MXene interlayer for enhanced polysulfide shuttling inhibition in lithium-sulfur batteries. J Power Sources 2023;580:233445.

111. Gu H, Yue W, Hu J, et al. Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium-sulfur batteries. Adv Energy Mater 2023;13:2204014.

112. Chen D, Zhu T, Shen S, et al. In situ synthesis of VS4/Ti3C2Tx MXene composites as modified separators for lithium-sulfur battery. J Colloid Interface Sci 2023;650:480-9.

113. Liang Q, Wang S, Jia X, et al. MXene derivative Ta4C3-Ta2O5 heterostructure as bi-functional barrier for Li-S batteries. J Mater Sci Technol 2023;151:89-98.

114. Tian S, Zeng Q, Liu G, et al. Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nanomicro Lett 2022;14:196.

115. Shi C, Huang J, Tang Y, et al. A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li-S batteries. Carbon 2023;202:59-65.

116. Wang Q, Liu A, Qiao S, et al. Mott-schottky MXene@WS2 heterostructure: structural and thermodynamic insights and application in ultra stable lithium-sulfur batteries. ChemSusChem 2023;16:e202300507.

117. Liang Q, Wang S, Lu X, et al. High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 2024;18:2395-408.

118. Wang X, Zhu B, Xu D, et al. Synergistic effects of Co3Se4 and Ti2C3Tx for performance enhancement on lithium-sulfur batteries. ACS Appl Mater Interfaces 2023;15:26882-92.

119. Li B, Zhang D, Liu Y, Yu Y, Li S, Yang S. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017;39:654-61.

120. Li W, Zhang Y, Li H, et al. Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batteries Supercaps 2020;3:892-9.

121. Wei C, Tian M, Fan Z, et al. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater 2021;41:141-51.

122. Shi H, Zhang CJ, Lu P, Dong Y, Wen P, Wu ZS. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 2019;13:14308-18.

123. Ren Y, Wang B, Liu H, et al. CoP nanocages intercalated MXene nanosheets as a bifunctional mediator for suppressing polysulfide shuttling and dendritic growth in lithium-sulfur batteries. Chem Eng J 2022;450:138046.

124. Wei C, Xi B, Wang P, et al. In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating. Adv Mater 2023;35:e2303780.

125. Wei C, Wang Z, Wang P, et al. One-step growth of ultrathin CoSe2 nanobelts on N-doped MXene nanosheets for dendrite-inhibited and kinetic-accelerated lithium-sulfur chemistry. Sci Bull 2024:S2095-9273(24)00199.

126. Ma L, Jiang YK, Xu DR, et al. Enabling stable and low-strain lithium plating/stripping with 2D layered transition metal carbides by forming Li-zipped MXenes and a Li halide-rich solid electrolyte interphase. Angew Chem Int Ed 2024;63:e202318721.

127. Wang C, Yang C, Du Y, Guo Z, Ye H. Spherical lithium deposition enables high Li-utilization rate, low negative/positive ratio, and high energy density in lithium metal batteries. Adv Funct Mater 2023;33:2303427.

128. Liu Y, Meng X, Wang Z, Qiu J. Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries. Nat Commun 2022;13:4415.

129. Liu S, Chen M, Xie Y, et al. Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide adsorptivity. Rare Met 2023;42:2562-76.

130. Bao W, Wang R, Qian C, et al. Porous heteroatom-doped Ti3C2Tx MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium-sulfur batteries. ACS Nano 2021;15:16207-17.

131. Wang Z, Liu Y, Guo Y, et al. Coral polyp and spine dual-inspired gradient hierarchical architecture for ultrahigh-rate and long-life sodium storage. Adv Funct Mater 2024:2402178.

132. Cheng Y, Huang J, Yu F, et al. Chemically bonded MXene/SnSe2 composite with special structural transformation as a high-performance anode for lithium and potassium ions battery. Chem Eng J 2024;481:148737.

133. Zheng RX, Du DY, Yan Y, Liu S, Wang XX, Shu CZ. Cation vacancy modulated interfacial electronic interactions for enhanced electrocatalysis in lithium-oxygen batteries. Adv Funct Mater 2024:2316440.

134. Zhang H, Zhu M, Tang H, et al. A high-voltage Zn-air battery based on an asymmetric electrolyte configuration. Energy Storage Mater 2023;59:102791.

135. Li J, Yuan X, Lin C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 2017;7:1602725.

136. Wang XY, Liao SY, Huang HP, et al. Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 2023;7:e2201694.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/