REFERENCES

1. Sun J, Liu J, Wang Y, Yuan H, Yan Z. Development status, policy, and market mechanisms for battery energy storage in the US, China, Australia, and the UK. J Renew Sustain Ener 2023;15:024101.

2. Koohi-Fayegh S, Rosen MA. A review of energy storage types, applications and recent developments. J Energy Storage 2020;27:101047.

3. Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Brief history of early lithium-battery development. Materials 2020;13:1884.

4. Feng T, Guo W, Li Q, Meng Z, Liang W. Life cycle assessment of lithium nickel cobalt manganese oxide batteries and lithium iron phosphate batteries for electric vehicles in China. J Energy Storage 2022;52:104767.

5. Mejame PPM, Jung DY, Lee H, Lee DS, Lim SR. Effect of technological developments for smartphone lithium battery on metal-derived resource depletion and toxicity potentials. Resour Conserv Recy 2020;158:104797.

6. Lang P, Yuan N, Jiang Q, Zhang Y, Tang J. Recent advances and prospects of metal-based catalysts for oxygen reduction reaction. Energy Technol 2020;8:1900984.

7. Chen X, Liu J, Yuan T, et al. Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction. Energy Mater 2022;2:200028.

8. Kumar J, Neiber RR, Park J, et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: strategies for highly selective lithium recovery. Chem Eng J 2022;431:133993.

9. Bhatt A, Tiwari S, Ongsakul W. A review on re-utilization of electric vehicle’s retired batteries. In: 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE); 2018 Oct 24-26; Phuket, Thailand. IEEE; 2018. p. 1-5.

10. Lv Y, Luo W, Mo Y, Zhang G. Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications. RSC Adv 2022;12:14127-36.

11. Zhou M, Li B, Li J, Xu Z. Pyrometallurgical technology in the recycling of a spent lithium ion battery: evolution and the challenge. ACS EST Eng 2021;1:1369-82.

12. Ma Y, Tang J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater 2021;402:123491.

13. Lin J, Li L, Fan E, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl Mater Interfaces 2020;12:18482-9.

14. Li J, Wang L, Li L, Lv C, Zatovsky IV, Han W. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal-aspergillus niger bioleaching strategy. ACS Appl Mater Interfaces 2019;11:8072-80.

15. Chang X, Fan M, Yuan B, et al. Potential controllable redox couple for mild and efficient lithium recovery from spent batteries. Angew Chem Int Ed Engl 2023;62:e202310435.

16. Kong Y, Yuan L, Liao Y, Shao Y, Hao S, Huang Y. Efficient separation and selective Li recycling of spent LiFePO4 cathode. Energy Mater 2023;3:300053.

17. Liang Z, Cai C, Peng G, et al. Hydrometallurgical recovery of spent lithium ion batteries: environmental strategies and sustainability evaluation. ACS Sustain Chem Eng 2021;9:5750-67.

18. Jiang G, Zhang Y, Meng Q, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustain Chem Eng 2020;8:18138-47.

19. Ji G, Wang J, Liang Z, et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat Commun 2023;14:584.

20. Ma J, Wang J, Jia K, et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J Am Chem Soc 2022;144:20306-14.

21. Shi Y, Zhang M, Meng YS, Chen Z. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv Energy Mater 2019;9:1900454.

22. Wang J, Ma J, Jia K, et al. Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries. ACS Energy Lett 2022;7:2816-24.

23. Wang J, Zhang Q, Sheng J, et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl Sci Rev 2022;9:nwac097.

24. Xu P, Tan DHS, Jiao B, Gao H, Yu X, Chen Z. A materials perspective on direct recycling of lithium-ion batteries: principles, challenges and opportunities. Adv Funct Mater 2023;33:2213168.

25. Li P, Luo S, Zhang L, et al. Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review. J Energy Chem 2024;89:144-71.

26. Fan E, Li L, Wang Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev 2020;120:7020-63.

27. Ji H, Wang J, Ma J, Cheng HM, Zhou G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem Soc Rev 2023;52:8194-244.

28. Makuza B, Tian Q, Guo X, Chattopadhyay K, Yu D. Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J Power Sources 2021;491:229622.

29. Niu B, Xu Z, Xiao J, Qin Y. Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem Rev 2023;123:8718-35.

30. Zhang X, Li L, Fan E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev 2018;47:7239-302.

31. Xiong L, Tang J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater 2021;11:2003216.

32. Zhang C, Bai L, Chen M, et al. Modulating the site density of mo single atoms to catch adventitious O atoms for efficient H2O2 oxidation with light. Adv Mater 2023;35:2208704.

33. Lv X, Lin J, Huang Q, et al. An emerging and consummate photocatalysis-assisted strategy for efficient recycling of spent lithium-ion batteries. ACS Energy Lett 2023;8:4287-95.

34. Eskin GI. Cavitation mechanism of ultrasonic melt degassing. Ultrason Sonochem 1995;2:S137-41.

35. Jiang F, Chen Y, Ju S, et al. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries. Ultrason Sonochem 2018;48:88-95.

36. Li L, Zhai L, Zhang X, et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources 2014;262:380-5.

37. Li H, Berbille A, Zhao X, Wang Z, Tang W, Wang ZL. A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries. Nat Energy 2023;8:1137-44.

38. Zhang YC, Yu WH, Xu SM. Enhanced leaching of metals from spent lithium-ion batteries by catalytic carbothermic reduction. Rare Met 2023;42:2688-99.

39. Nshizirungu T, Rana M, Jo YT, Park JH. Rapid leaching and recovery of valuable metals from spent lithium ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride. J Hazard Mater 2020;396:122667.

40. Porvali A, Chernyaev A, Shukla S, Lundström M. Lithium ion battery active material dissolution kinetics in Fe(II)/Fe(III) catalyzed Cu-H2SO4 leaching system. Sep Purif Technol 2020;236:116305.

41. Lyu Y, Wu X, Wang K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater 2021;11:2000982.

42. Zhao Y, Yuan X, Jiang L, Li X, Zhang J, Wang H. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chem Eng J 2020;400:125903.

43. Hossain R, Sahajwalla V. Microrecycled Co3O4 from waste lithium-ion battery: synthesis, characterisation and implication in environmental application. J Environ Chem Eng 2022;10:107858.

44. Kang J, Tang D, Liu Y, et al. Hydrogen-treated spent lithium cobalt oxide as an efficient electrocatalyst for oxygen evolution. Ind Eng Chem Res 2023;62:3882-8.

45. Kim J, Kim HG, Kim HS, Dang Van C, Lee MH, Jeon KW. Facile gram-scale synthesis of Co3O4 nanocrystal from spent lithium ion batteries and its electrocatalytic application toward oxygen evolution reaction. Nanomaterials 2022;13:125.

46. Yu Y, Li X, Shao S, Zhang P, Jiang J. Hydrogen production via biomass fast pyrolysis and in-line steam reforming using carbon reduced cathode material of spent LiCoO2 batteries as catalyst. Fuel 2024;357:129659.

47. Wang J, Sun X. Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 2015;8:1110-38.

48. Luo K, Zhou M, Liu T, et al. A high-performance zinc-air battery cathode catalyst from recycling of spent lithium iron phosphate batteries. Small Struct 2023;4:2300107.

49. Cui B, Liu C, Zhang J, et al. Waste to wealth: defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci China Mater 2021;64:2710-8.

50. Zhang SS. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater 2020;24:247-54.

51. Zhao G, Gong ZL, Li YX, Yang Y. Study on surface modification of LiNi0.96Co0.02Mn0.02O2 with tungsten oxide and phosphotungstic acid. J Electrochem 2022;29:2204281.

52. Li Z, Huang X, Liang J, et al. Element doping induced microstructural engineering enhancing the lithium storage performance of high-nickel layered cathodes. J Energy Chem 2023;77:461-8.

53. Guo M, Li K, Liu L, et al. Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation. J Hazard Mater 2019;380:120905.

54. Li S, Zhu X, Wang X, et al. High-valence Ni3+ construction and stability by electrochemical de-lithiation boosting oxygen evolution. Mater Chem Front 2023;7:5868-78.

55. Jiao M, Zhang Q, Ye C, et al. Recycling spent LiNi1-x-yMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. Proc Natl Acad Sci U S A 2022;119:e2202202119.

56. Pham HD, Krishnan SG, Wang T, et al. Upcycling of nickel oxide from spent Ni-MH batteries as ultra-high capacity and stable Li-based energy storage devices. Sustain Mater Technol 2023;36:e00602.

57. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev 2018;118:11433-56.

58. Ruan D, Zou K, Du K, et al. Recycling of graphite anode from spent lithium-ion batteries for preparing Fe-N-doped carbon ORR catalyst. ChemCatChem 2021;13:2025-33.

59. Zhao Y, Wang H, Li X, Yuan X, Jiang L, Chen X. Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation. J Hazard Mater 2021;420:126552.

60. Jiao M, Zhang Q, Ye C, et al. Isolating contiguous Fe atoms by forming a Co-Fe intermetallic catalyst from spent lithium-ion batteries to regulate activity for zinc-air batteries. ACS Nano 2022;16:13223-31.

61. Serbara Bejigo K, Bhunia K, Kim J, Lee C, Back S, Kim SJ. Upcycling end of lithium cobalt oxide batteries to electrocatalyst for oxygen reduction reaction in direct methanol fuel cell via sustainable approach. J Energy Chem 2023;82:148-57.

62. Zhou J, Bing J, Ni J, Wang X, Guan X. Recycling the waste LiMn2O4 of spent Li-ion batteries by pH gradient in neutral water electrolyser. Mater Today Sustain 2022;20:100205.

63. Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021;50:3519-64.

64. Tian ZQ, Ren B, Li JF, Yang ZL. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 2007:3514-34.

65. Wang Y, Cao H, Chen L, et al. Tailored synthesis of active reduced graphene oxides from waste graphite: structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Appl Catal B Environ 2018;229:71-80.

66. Cowan AJ, Hardwick LJ. Advanced spectroelectrochemical techniques to study electrode interfaces within lithium-ion and lithium-oxygen batteries. Annu Rev Anal Chem 2019;12:323-46.

67. Gu Y, Tang S, Yi J, et al. Nanostructure-based plasmon-enhanced Raman spectroscopic strategies for characterization of the solid–electrolyte interphase: opportunities and challenges. J Phys Chem C 2023;127:13466-77.

68. Ding SY, Yi J, Li JF, et al. Erratum: Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 2016:16036.

69. Zhang Y, Ze H, Fang P, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Rev Methods Primers 2023;3:37.

70. Wang X, Huang SC, Hu S, Yan S, Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys 2020;2:253-71.

71. Gu Y, Hu YF, Wang WW, et al. An in-situ Raman spectroscopic study on the interfacial process of carbonate-based electrolyte on nanostructured silver electrode. J Electrochem 2023;29:2301261.

72. Yang JL, Xu J, Ren H, et al. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. Nanoscale 2017;9:6254-8.

73. Ze H, Chen X, Wang XT, et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J Am Chem Soc 2021;143:1318-22.

74. Li JF, Huang YF, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010;464:392-5.

75. Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 2017;117:5002-69.

76. Gu Y, You EM, Lin JD, et al. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat Commun 2023;14:3536.

77. Dong JC, Zhang XG, Briega-Martos V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat Energy 2019;4:60-7.

78. Zhang J, Zhang XG, Dong JC, et al. Real-time monitoring of surface effects on the oxygen reduction reaction mechanism for aprotic Na-O2 batteries. J Am Chem Soc 2021;143:20049-54.

79. Wei J, Zhang YJ, Qin SN, et al. Understanding the strain effect of Au@Pd nanocatalysts by in situ surface-enhanced Raman spectroscopy. Chem Commun 2019;55:8824-7.

80. Zhang H, Wang C, Sun HL, et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Commun 2017;8:15447.

81. Wang YH, Le JB, Li WQ, et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew Chem Int Ed Engl 2019;58:16062-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/